Mastodon Visualization Decision Making Laboratory
  • Visual Reasoning
  • Mental Schemas
  • Hazard Forecasting

Visualization Decision-Making

People use visualizations to make large-scale decisions, such as whether to evacuate a town before a hurricane strike, and more personal decisions, such as which medical treatment to undergo. Given their widespread use and social impact, we believe it is vital to ensure that visualizations clearly and effectively communicate data. We conduct empirical evaluations and qualitative analysis to determine how visualizations both help and hinder the decision-making process. Our goal is to use cognitive science to improve the presentation of information and to train people to be more informed information consumers.


Topics
uncertainty visualization, measuring cognitive effort, theoretical models of decision making with visualizations, mental models of data, rainbow color maps, effects of binning continuous data, hurricane forecasting, hazard maps, metaphors

Featured Media

Publications

2022

item thumbnail

Impact of COVID-19 forecast visualizations on pandemic risk perceptions.

Citation: Padilla, L., Hosseinpour, H., Fygenson, R., Howell, J., Chunara, R., & Bertini, E. (2022). Impact of COVID-19 forecast visualizations on pandemic risk perceptions. Scientific reports, 12(1), 1-14.

2021

item thumbnail

The Science of Visual Data Communication: What Works.

Citation: Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M., & Hullman, J. (2021). The science of visual data communication: What works. Psychological Science in the Public Interest, 22(3), 110-161.
item thumbnail

Examining Effort in 1D Uncertainty Communication Using Individual Differences in Working Memory and NASA-TLX.

Citation: Spencer C Castro, Helia Hosseinpour, P Samuel Quinan, Lace Padilla (2021 in press). IEEE VIS 2021.
item thumbnail

Conceptual metaphor and graphical convention influence the interpretation of line graphs.

Citation: Greg Woodin, Bodo Winter, and Lace Padilla (2021 in press). IEEE VIS 2021.
item thumbnail

Multiple Hazard Uncertainty Visualization Challenges and Paths Forward.

Citation: Padilla, L. M., Dryhurst, S., Hosseinpour, H., & Kruczkiewicz, A. (2021). Multiple Hazard Uncertainty Visualization Challenges and Paths Forward. Frontiers in Psychology, 12, 1993.
item thumbnail

A review of uncertainty visualization errors: Working memory as an explanatory theory.

Citation: Padilla, L., Castro, S. C., & Hosseinpour, H. (2021). A review of uncertainty visualization errors: Working memory as an explanatory theory. In K. D. Federmeier (Ed.), The psychology of learning and motivation (Vol. 74, pp. 275–315). Psychology of Learning and Motivation. Academic Press. doi:https://doi.org/10.1016/bs.plm.2021.03.001
item thumbnail

Uncertainty Visualization (book chapter)

Citation: Padilla, Kay, & Hullman (in press). Uncertainty Visualization. To appear in, Handbook of Computational Statistics and Data Science.
item thumbnail

Mapping the Landscape of COVID-19 Crisis Visualizations

Citation: Zhang, Y., Sun, Y., Padilla, L., Barua, S., Bertini, E., & Parker, A. G. (2021). Mapping the Landscape of COVID-19 Crisis Visualizations. To apprear in CHI 2021.
item thumbnail

Uncertain about uncertainty: How qualitative expressions of forecaster confidence impact decision-making with uncertainty visualizations

Citation: Padilla, L. M., Powell, M., Kay, M., & Hullman, J. (2021). Uncertain about uncertainty: How qualitative expressions of forecaster confidence impact decision-making with uncertainty visualizations. Frontiers in Psychology, 11.

2020

item thumbnail

The Powerful Influence of Marks: Visual and Knowledge-Driven Processing in Hurricane Track Displays

Citation:Padilla, L. M., Creem-Regehr, S. H., & Thompson, W. (2020). The powerful influence of marks: Visual and knowledge-driven processing in hurricane track displays. Journal of Experimental Psychology: Applied, 26(1), 1.

2019

item thumbnail

Toward objective evaluation of working memory in visualizations: A case study using pupillometry and a dual-task paradigm.

Citation: Padilla, L., Castro, S., Quinan, P., Ruginski, I. & Creem-Regehr, S. (2019, October). Examining Implicit Discretization in Spectral Schemes. IEEE transactions on visualization and computer graphics. VIS 2019.
item thumbnail

Examining Explicit Discretization in Spectral Schemes

Citation: Quinan, P., Padilla, L., Creem-Regehr, S., & Meyer, M. (2019, May). Examining Implicit Discretization in Spectral Schemes. Computer Graphics Forum.

2018

item thumbnail

A Case for Cognitive Models in Visualization Research

Citation: Padilla, L. (2018, October). A Case for Cognitive Models in Visualization Research. In Proceedings of the Seventh Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (pp. 143-151). ACM.
item thumbnail

Decision Making with Visualizations: A Cognitive Framework Across Disciplines

Citation: Padilla, L., Creem-Regehr, S. H., Hegarty, M., & Stefanucci, J. K. (2018, July). Decision making with visualizations: a cognitive framework across disciplines. Cognitive Research: Principles and Implications, 3(1), 29. doi:10.1186/s41235-018-0120-9
item thumbnail

Visualizing uncertain tropical cyclone predictions using representative samples from ensembles of forecast tracks

Citation: Liu, L., Padilla, L., Creem-Regehr, S., & House, D. (2018). Visualizing uncertain tropical cyclone predictions using representative samples from ensembles of forecast tracks. IEEE transactions on visualization and computer graphics.

*Downloads: Supplementary Materials, Visualization technique code, and User study analysis R code + data

2017

item thumbnail

Effects of Ensemble and Summary Displays on Interpretations of Geospatial Uncertainty Data

Citation: Padilla, L., Ruginski, I., Creem-Regehr, S. H. (2017). Effects of Ensemble and Summary Displays on Interpretations of Geospatial Uncertainty Data. Cognitive Research: Principles and Implications,2(1), 40. https://doi.org/10.1186/s41235-017-0076-1.

*Downloads: Data
item thumbnail

Uncertainty Visualization by Representative Sampling from Prediction Ensembles

Citation: Liu, L., Boone, A. P., Ruginski, I. T., Padilla, L., Hegarty, M., Creem-Regehr, S. H., ... & House, D. H. (2017). Uncertainty Visualization by Representative Sampling from Prediction Ensembles. IEEE transactions on visualization and computer graphics, 23(9), 2165-2178.

2016

item thumbnail

Non-expert interpretations of hurricane forecast uncertainty visualizations

Citation: Ruginski, I. T., Boone, A. P., Padilla, L., Liu, L., Heydari, N., Kramer, H. S., ... & Creem-Regehr, S. H. (2016). Non-expert interpretations of hurricane forecast uncertainty visualizations. Spatial Cognition & Computation, 16(2), 154-172.

*Downloads: Data
item thumbnail

Evaluating the impact of binning 2D scalar fields

Citation: Padilla, L., Quinan, P. S., Meyer, M., & Creem-Regehr, S. H. (2016). Evaluating the impact of binning 2D scalar fields.IEEE transactions on visualization and computer graphics, 23(1), 431-440.

*Downloads: Supplementary Materials, Data (made available Nov 12th 2017, see documentation)

2015

item thumbnail

The influence of different graphical displays on nonexpert decision making under uncertainty

Padilla, L., Hansen, G., Ruginski, I. T., Kramer, H. S., Thompson, W. B., & Creem-Regehr, S. H. (2015). The influence of different graphical displays on nonexpert decision making under uncertainty. Journal of Experimental Psychology: Applied, 21(1), 37.