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ABSTRACT

The visualization community has seen a rise in the adoption of user
studies. Empirical user studies systematically test the assumptions
that we make about how visualizations can help or hinder view-
ers’ performance of tasks. Although the increase in user studies is
encouraging, it is vital that research on human reasoning with visual-
izations be grounded in an understanding of how the mind functions.
Previously, there were no sufficient models that illustrate the process
of decision-making with visualizations. However, Padilla et al. [41]
recently proposed an integrative model for decision-making with
visualizations, which expands on modern theories of visualization
cognition and decision-making. In this paper, we provide insights
into how cognitive models can accelerate innovation, improve valid-
ity, and facilitate replication efforts, which have yet to be thoroughly
discussed in the visualization community. To do this, we offer a
compact overview of the cognitive science of decision-making with
visualizations for the visualization community, using the Padilla
et al. [41] cognitive model as a guiding framework. By detailing
examples of visualization research that illustrate each component
of the model, this paper offers novel insights into how visualization
researchers can utilize a cognitive framework to guide their user
studies. We provide practical examples of each component of the
model from empirical studies of visualizations, along with visual-
ization implications of each cognitive process, which have not been
directly addressed in prior work. Finally, this work offers a case
study in utilizing an understanding of human cognition to generate
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a novel solution to a visualization reasoning bias in the context of
hurricane forecast track visualizations.

Index Terms: Cognitive Model—Cognition—Decision Making—
Human Centered Design—Replication—Visualization Design—
Evaluation Methods—Innovation—Validity

1 INTRODUCTION

At their best, visualizations of data effortlessly reveal the true nature
of information. Essential patterns in data may go unnoticed until
we use visualizations to understand data in new ways [6]. While
understanding how the mind reasons with visual information is key
to accurately predicting how a viewer will make decisions with a
visualization, there has been a general lack of focus on cognition in
visualization science [26, 33, 41]. Visualization research that fails to
incorporate human reasoning may stifle innovation, reduce validity,
and hinder replication efforts.

The lack of incorporation of a modern understanding of men-
tal processing is likely due to the absence of a clear illustration
of how we make decisions with visualizations, aimed at inform-
ing the visualization community. This paper provides a high-level
overview of modern cognitive theories for how humans make de-
cisions with visualizations. We use a recently published cognitive
model to illustrate contemporary theories of the organization of the
visualization decision-making process, and then expand on how this
work specifically applies to visualization research. In this paper, we
provide insights into how cognitive models can accelerate innova-
tion, improve validity, and facilitate replication efforts, which have
yet to be thoroughly discussed in the visualization community. To
illustrate the application of a cognitive model for decision-making
with visualizations, we offer examples from empirical studies that
show how specific cognitive processes can influence how effectively
people use visualizations. As a case study, we demonstrate the use
of the Padilla et al. [41] cognitive model to identify the specific



decision-making process that was responsible for viewers’ misinter-
pretation of ensemble hurricane forecast track visualizations [45].
Identifying the potential cognitive processes responsible for rea-
soning errors allowed us to explore novel solutions that we would
not have considered otherwise. In the end, we were able to reduce
the reasoning errors by making changes to the hurricane forecast
visualization technique, which could improve people’s decisions
when making time sensitive and high-risk decisions about impend-
ing storms [36, 52]. The unique contribution of this work is the
focused discussion of how pressing issues in visualization research
(i.e., innovation, validity, and replication) can be supported with a
thorough understanding of how the human mind processes visualiza-
tions. Cognitive frameworks provide a human-centered structure for
approaching these problems. Beyond theoretical insights, this paper
expands on our prior work by curating practical examples for the
visualization community of how each component of the cognitive
model relates to visualization research.

2 WHY USE A COGNITIVE MODEL?

Cognitive models are summaries of mental process theories. They
can include a particular theory or an integration of multiple theo-
ries and approaches. Cognitive models can be illustrated as pro-
cess diagrams, such as in Figure 1. Process diagrams illustrate the
overarching framework of a cognitive theory and can be useful to
summarize large bodies of research. For example, the process di-
agram in Figure 1 illustrates the mental processes associated with
visualization decision-making—beginning with viewing a visual-
ization (the visual array) and concluding with a behavior based on
a decision. The boxes and paths in between the visual array and
behavior denote specific cognitive mechanisms, processes, and in-
fluences that researchers have extensively examined in numerous
domains. Although each component of this model denotes entire
fields of research and is obviously an oversimplification, it provides
readers with a broad overview of current conceptualizations of the
visualization decision-making process.

Research on visualization decision-making that is not informed
by underlying cognitive processes may undermine innovation by
failing to examine solutions based on cognitive science. An un-
derstanding of the full space of solutions is vital for maximizing
innovation. Leaving out relatively obvious options based on a lack
of understanding of cognition drastically reduces the decision space
and thus constrains innovation. Considering the importance and
impact of decisions with visualizations, researchers need to build
upon previously established theories of how the mind processes vi-
sualizations to ensure that the best solutions are identified as quickly
as possible.

Cognitive models can also be useful in evaluating the validity
of research. There are various forms of validity, each of which is
important for the visualization community to consider. The term eco-
logical validity refers to how closely the conditions of an experiment
match real-world conditions [9]. As with any empirical research,
there is a trade-off between experimental control and ecological
validity, as illustrated in Figure 2. To make an optimal choice be-
tween experimental control and ecological validity, researchers need
to understand the cognitive processes at work when real users are
performing the task in a natural setting. If the experimenters know
which cognitive conditions are fundamental to the task, then they can
determine which elements could be changed to increase experimen-
tal control. The second type of validity is external validity, which
refers to the ability to generalize contexts and groups other than the
ones tested in the original study [3, 5, 51]. For example, a study
might have groundbreaking results that apply to only a small group
of people. On the other hand, a study might have a small impact but
apply to the majority of people and contexts. Cognitive models such
as that of Padilla et al. [41] often illustrate how individual differ-
ences in knowledge or expertise influence cognition. If researchers
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Figure 2: Example of specific types of validity: ecological, external,
and construct. This figure illustrates the trade-off between validity and
other components of an experiment.

believe that knowledge-driven processing plays an important role in
their study, then they should either provide participants with train-
ing, in an attempt to equalize viewers’ knowledge, or focus on a
group of experts, which could reduce external validity. The final
type of validity is construct validity, which refers to the ability of
a study to measure what it claims to measure [14]. For example,
some visualization studies use a task-based approach and measure
speed and accuracy then claim that these measures are proxies for
mental effort [66–69]. In contrast, a cognitive approach offers more
direct measures of mental effort that have yet to be widely adopted
by visualization studies, such as neuroimaging, pupillometry, or
dual-task paradigms [7]. Visualization researchers who are inter-
ested in making claims about mental effort should consider adopting
more direct measures of working memory. For example, other fields
have demonstrated that working memory can be effectively mea-
sured during tasks such as virtual navigation and spacial abilities
measures [21]. Working memory measures provide greater construct
validity than measures of speed and accuracy. By using a cognitive
model, researchers can identify which cognitive component they
are interested in and then utilize the most direct measures of testing
it. Using a cognitive model, at a minimum, helps researchers make
more informed decisions about the trade-offs between experimental
control vs. ecological validity, populations of convenience (such as
undergraduate students at elite universities) vs. external validity, and
measures of convenience (such as speed and accuracy) vs. construct
validity (as seen in Figure 2).

An additional benefit of utilizing a cognitive model is the ability
to conduct conceptual replications more effectively. Conceptual
replication is when researchers create a study intended to reveal the
same phenomenon, results, or cognitive processes of previous re-
search [61]. In the context of visualization user studies, researchers
must have a clear understanding of the underlying mental processes
that produce the specific finding to attempt to replicate the result
conceptually. One way to conduct a conceptual replication is to
utilize a cognitive model to identify the specific components or inter-
action of components in the visualization decision-making process
that produced the original finding. If a researcher can identify the
responsible components or interactions, then it becomes more clear
which components of an experiment can be changed and which need
to remain constant to enact a conceptual replication. Note that a
full discussion of the types of replication is beyond the scope of
this paper, but researchers are engaged in an ongoing debate about
the merits of various types of replication techniques [10, 46, 57, 61].
One view argues that direct or exact replication is the gold standard
for evaluating the size and reliability of a finding [46, 57]. Exact
replication is when a group of researchers attempts to duplicate a
previous study, using identical methods, to determine if the sec-
ondary study reveals the same findings. Researchers must use the
same population, experiment design, data collection procedures,
stimuli, and data analysis procedures as the original study to ensure
that any differences between the results are not due to changes in
the experiment [46, 57]. However, the nature of visualization re-



search often makes direct replication unattainable. For example, if
a study utilizes expert participants, it might be impossible to find a
comparable group of experts to conduct a direct replication as the
specific training or organizational norms might vary between groups
of experts. In some cases, a conceptual replication would be the
viable option, and in these cases, a solid understanding of the mental
processes associated with an experiment is required [61].

In sum, cognitive models provide a high-level overview of mental
processing and can be used to bolster innovation, improve validity,
and facilitate replication efforts. The following sections offer a
description of one cognitive model that visualization practitioners
can use as an organizing framework for the vast body of cognitive
science on visualization decision-making.

3 COGNITIVE MODEL

The model proposed by Padilla, Creem-Regehr, Hegarty, and Ste-
fanucci [41] is an integrative model that synthesizes theories of
visualization comprehension [26,34,49,55,68] and decision-making
[13, 17, 23, 59, 63]. The following section will detail each mech-
anism (square), process (solid path), and influence (dashed path)
of the Padilla et al. [41] model (see Figure 1) for a visualization
audience. Each section includes a specific description of visualiza-
tion applications of the cognitive mechanism. As the aim here is to
provide a high-level overview of the visualization decision-making
process, each section is a considerable oversimplification. However,
for those interested in diving deeper into a specific topic, we offer
recommended reading on each cognitive mechanism.

3.1 Visual Array
The visual array is the unprocessed neuronal firing in response to
visualizations [49]. The anatomy of the eye, and more broadly the
visual system, profoundly influences the way we reason with visu-
alizations. The visual system refers to the complicated relationship
between the eyes and brain that facilitates vision [24]. By understand-
ing the visual system, we have the building blocks for understanding
how people reason with visualizations. This research is outlined by
comprehensive texts, including those by William Thompson, Roland
Fleming, Sarah Creem-Regehr, and Jeanine Stefanucci [62] and
Tamara Munzner [39].

The anatomy of the eye can influence viewers’ interpretation of
visualizations in a variety of ways [62]. One relevant application
is the perception of color. Color is a commonly used encoding
channel [39], and the organization of color can change a viewers’
perception of a specific color, known as simultaneous contrast [24].
Simultaneous contrast is when the surrounding colors influence our
perception of a specific color, which arises from the relationship
between neighboring neurons in the visual system [4, 24, 62]. For a
simple example see Figure 3, which demonstrates the Mach Band
illusion where edges of the rectangles appear to have dark and light
coloration even though each rectangle is a single gray value [50].
This illusion is created by the organization of neurons in the eye,
which is termed lateral inhibition [24].

The Mach Band illusion and other similar perceptual phenomena
can have significant effects on how viewers reason with visualiza-
tions. For example, Figure 4 shows sections of a digital elevation
map (DEM) used as stimuli in Padilla et al. [42], with A showing
a continuous grayscale encoding and B showing the same data but
binned at 40-meter intervals. In this study participants completed
12 tasks ranging in complexity from look-up to feature integration
and comparison tasks, while viewing either a continuously encoded
DEM or DEMs with various binning intervals (10-, 20-, 30-, 40-
meter intervals). The researchers were interested in evaluating how
binning intervals influenced performance on a wide range of geospa-
tial tasks. The overall takeaway from this study was that there were
no cases where the continuous encoding facilitated better accuracy
than one of the binning techniques [42]. One possible reason for the

Figure 3: Example Mock Band illusion, where the edges of the gray
bands create the perceptual effect of lightness on the relatively lighter
gray edge and darker on the relatively darker gray edge, even though
each section is a discrete gray [38].

(a) (b)

Figure 4: A is a continuous grayscale encoding of a portion of a digital
elevation map, which was used as stimuli in Padilla et al. [42]. B is the
same data but binned at 40-meter intervals. Reprinted with permission
from “Evaluating the impact of binning 2D scalar fields” by Padilla,
L., Quinan, P. S., Meyer, M., Creem-Regehr, S. H. (2016).IEEE
transactions on visualization and computer graphics, 23(1), 431-440.

superiority of the binning methods could be the Mach Band effect
created by the bins. Notice in Figure 4 B that a Mach Banding effect
dramatizes the edges of the bins. Mach Banding effects might also
increase the salience of borders of choropleth maps with sequential
color encodings.

3.2 Bottom-up Attention
The amount of information in the world is greater than our visual sys-
tems’ limited ability to perceive it. Attention is the mechanism our
visual systems use to select the information to perceive [65], which
is a topic that researchers have studied extensively in neuroscience,
physiology, psychology, and computer vision [29]. Visualizations
can draw our attention to specific salient features. Salience is the
degree which a visual feature will stand out from its surrounding ele-
ments [29]. A variety of approaches exist for computing the salience
of an image, which commonly identifies local changes in color, in-
tensity, orientation, motion cues, structures, and gradients [8, 11, 29].
This type of stimulus-driven attention is bottom-up and is thought to
be pre-conscious or involuntary [12, 53].

Numerous studies have demonstrated that when incorporated into
visualization design, salience can guide viewers’ bottom-up attention
to task-relevant information, thereby improving performance [18,19,
27, 45, 54, 60, 72]. To evaluate which elements of a visualization are
more salient, consider utilizing the Itti et al. [28] model, which has
been evaluated with eye tracking data.

One way to utilize bottom-up attention when developing visual-
izations is to capitalize on the pop-out effect and perceptual grouping.
Munzner [39] describes how many visual channels support the fast
identification of mismatched visual features (pop-out) and the visual
clustering of features (Gestalt laws of perceptual grouping), includ-
ing color, shape, proximity, and tilt, among many others (see Figure
5 for examples). The broad goal of utilizing pop-out and Gestalt
laws is to create a visual hierarchy of information, and in doing
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Figure 5: Examples of pop-out effects and perceptual grouping.

Figure 6: An optical illusion in which the colors of the circles and
Xs are the same but appear to be different, based on a Munker-like
illusion developed by David Novick and Gestalt grouping principles.
The shapes below the illusion are all the same color and are the same
color as the shapes within the illusion.

so, direct viewers’ bottom-up attention to task-relevant information.
Researchers have employed low-level vision research to develop col-
ormaps that enhance the pop-out effects [70] and utilize perceptual
grouping to help viewers quickly identify similarities between text
and imagery [2]. An interesting example of the strong effects of per-
ceptual groupings is found in Figure 6. How do you see the shapes
grouped in this image? By color, shape, proximity, or size? You
likely see some combination of each with color playing a primary
role. Interestingly, the color of the circles and Xs are the same as
illustrated by the beige-colored objects below the illusion. Through
a combination of a Munker-like illusion developed by David Novick
and Gestalt grouping principles, the illusion creates the perception
that the shapes are different colors.

Note that the terms bottom-up and top-down are commonly used
to refer to processes that are automatic, unconscious, and physiolog-
ically based (bottom-up) and those that incorporate knowledge and
conscious processing (top-down). The Padilla et al. [41] model is in
line with previous theories in asserting that visualization decision-
making is an integration of both bottom-up and top-down process-
ing [26, 34, 49, 55, 68].

3.3 Top-down Attention
Top-down attention is when viewers deliberately direct their gaze
to specific features of a visualization based on knowledge about
their task [53]. Our ability to direct our attention is limited, and
researchers find that these limitations significantly influence our
ability to reason with visualizations [25]. For example, a viewer
might direct her attention to the legend in a visualization because
she knows that the legend contains valuable information. In contrast,
someone without a formal education might not have learned the
function of a legend and not direct her attention to it. When we
consciously direct our attention, effort is required. We will discuss
working memory at length in Section 3.4, but broadly, working
memory is the control mechanism that allocates mental effort [13].
For further reading on the long history and evolution of bottom-up
and top-down attention theory see The attention system of the human
brain: 20 years after, by Steven Petersen and Michael Posner [48].

Fabrikant et al., [18] and Hegarty et al. [27] demonstrated the rela-
tionship between bottom-up and top-down processing in a study with
temperature and pressure meteorological forecast maps. Hegarty et
al. found that when they manipulated the salience of the temperature
encoding (color) or the pressure encoding (isolines), the more salient
features drew viewers’ attention (as measured by eye fixations) but
did not influence their performance. The researchers then trained
participants on how to effectively interpret the features in the weather
map and found that more participants directed their attention to the
task-relevant features and their judgments improved [18, 27]. This
example shows how using using saliency to create a hierarchy can
help in directing viewers’ bottom-up attention, but it may not be
enough to improve their performance. Viewers may also need to
learn the task-relevant features of the visualization in order to also
direct their top-down attention (see also, [18]).

3.4 Working Memory and Conceptual Question
The conceptual question is the task or question the viewer hopes to
answer by interpreting the visualization [49]. To complete the task,
viewers commonly need to apply deliberate mental effort, which
requires working memory. The definition of working memory is the
subject of an ongoing debate. We shall adopt the definition used by
Cowan [13], that working memory consists of a multicomponent
system that maintains a finite amount of information for a short
period and controls the use of stored information. A central executive
controls the multicomponent functions of working memory and
can, among other functions, control top-down attention [1, 13, 47].
Working memory also holds information in a visuo-spatial temporary
store, which is where information can be held for a short period
without being stored in long-term memory [1]. In order to focus
on task-relevant information rather than on distracting information,
working memory is used to control attention and suppress automatic
responses [32, 56]. An essential characteristic of working memory
for visualization researchers to note is that working memory is
capacity limited, which means that working memory is a finite
resource that can be overly taxed by unnecessary processing or by
suppressing automatic responses.

As indicated by the dashed lines in Figure 1, working memory
can be used to aid in the majority of visualization decision-making
processes. The Padilla et al. [41] model illustrates how, with deliber-
ate application of working memory, we can make slower, effortful,
and more strategic decisions with visualizations. On the other hand,
if we do not apply working memory, we can also make fast and com-
putationally light decisions. The theory that proposes a distinction
between fast and slow processing was developed by researchers in
decision science and behavioral economics (for a review of the dual
process theory of decision-making, see [17]; and for a review of dual
process theory in the context of visualizations, see [41]).

Many visualization studies assert that one of the critical reasons
to visualize information is to reduce mental effort [6, 26]. By allow-



ing our visual system to identify complex relationships in visually
presented information, we free up working memory—also known as
augmenting decision-making [26]. Using this perspective, studies
commonly claim that a visualization technique may reduce mental
effort [15, 22, 64, 66–69, 73]. These studies use accuracy and task
completion time to infer working memory demand. However, direct
measures of working memory exist, such as pupillometry and behav-
ioral manipulations (see Padilla et al. [41] for an overview of how
to measure working memory demands in a visualization task). We
propose that visualization designers interested in evaluating the rela-
tive working memory demand of their visualization should directly
measure working memory. Indirect measures of working memory,
such as accuracy, may not be sensitive enough to detect significant
changes in working memory that could have large-scale impacts on
task performance outside the lab.

3.5 Visual Description
The visual description is the mental encoding of the visual stimulus
[49]. Interestingly, the visual description is not identical to the
visual array. The visual description includes only the information
the viewers perceived.

Researchers have dramatically demonstrated the differences be-
tween the visual array and visual description by showing that expert
radiologists commonly do not perceive a gorilla that the experi-
menters superimposed on chest CT images [16]. Drew, Võ, and
Wolfe found that because radiologists are focused on identifying
cancerous nodules, they may not perceive a cartoon gorilla that is
48 times larger than the average cancerous nodule. Many of the
radiologists looked directly at the gorilla but did not perceive it, and
thus the gorilla was not included in their visual description. This
phenomenon, termed inattentional blindness, is observed in many
contexts [16, 40, 58].

3.6 MATCH and Instantiated Graph Schema
A graph schema is a graphic convention or prior knowledge about
a visualization that a viewer uses to help interpret the visualization
[49]. The matching process occurs when a viewer searches in long-
term memory for a schema that matches a visualization. If she
remembers a relevant schema, she updates the visual description with
the additional information provided by the schema, thus instantiating
the graph schema. For example, if a viewer sees a bar chart, she
may remember the conventions for the X- and Y-axis and use that
information to interpret the graph. See Pinker [49] to learn more
about graphic schemas.

Cognitive Fit Theory is used by researchers to consider the men-
tal effort associated with understanding a visualization [67]. This
theory suggests that viewers compare a mental schema to the visual
description, and if there is not a complete match, then viewers must
mentally transform the visual description. As mental transformations
increase processing steps, time to complete the task, and opportunity
for errors, it is desirable to reduce mental transformations. Numer-
ous visualization studies use Cognitive Fit Theory to consider how
to improve visualizations [64, 66, 67, 69].

Common visualization reasoning errors occur during the graph
schema matching process when viewers accidentally use the wrong
graph schema. For example, Joslyn and LeClerc [30] found that
when participants viewed mean temperature forecasts with error
bars, they incorrectly believed that the error bars represented high-
and low temperatures. The authors proposed that viewers incorrectly
used the mental schema for high- and low-temperature forecasts
because they looked similar. Participants continued to use the wrong
schema despite a key detailing the correct way to interpret the fore-
casts. Other work also finds that even when given instructions on the
correct mental schema to use, viewers rely on the mental schema that
most closely visually matches the visualization [30, 41, 45]. Visual-
ization designers should not expect viewers to use any other mental
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Figure 7: Reversed Y-axis figure showing the relationship between
the population of species X and the introduction of a predator species.
Christine Chan of Reuters created the graph that inspired this one with
the Y-axis reversed ordered, which illustrated the relationship between
Florida’s Stand Your Ground law and firearm murders [35]. Reprinted
with permission from “Decision-making with Visualizations: A Cog-
nitive Framework Across Disciplines.” by Padilla, L., Creem-Regehr,
S. H., Hegarty, M., Stefanucci, J. K. (2018).Cognitive Research:
Principles and Implications, 3(1), 29.

schema than the one that looks most similar to the visualization.
With that said, many open questions about the specific nature of the
matching process remain. Additional empirical work is needed to
more specifically detail the relationship between the features in a
visualization and features in a remembered graphic schema.

3.7 Message Assembly, Inference, and the Conceptual
Message

The message assembly process is how the instantiated graph schema
is integrated with the visual description to form viewers’ mental
representation of the visualization. The resulting mental representa-
tion is the conceptual message. In order to answer the conceptual
question, the viewer may need to mentally transform or perform
other mental computations on the mental representation of the visu-
alization, which occurs in the inference process.

An example of an unnecessary mental transformation is illus-
trated in Figure 7 [41]. Figure 7 depicts a fictional relationship
between the population growth of Species X and a predator species.
If you look briefly at the figure, it may appear that the introduction
of the predator species is correlated with a drop in the population
of Species X. However, notice that the Y-axis is incorrectly reverse
ordered, which violates our mental schema for graphs. Using work-
ing memory, you may be able to mentally reorder the values on the
Y-axis to match the standard mental schema for graphs. However,
this mental transformation is difficult, and if you do not notice the
violation or do not want to work that hard, you might come to the
wrong conclusion about the figure. When the viewer is forced to
mentally transform the visualization, processing steps are increased,
which may increase errors, time to complete a task, and demand on
working memory [69]. Reversing the Y-axis may seem like a ridicu-
lous visualization choice that no one would do in the real world.
However, Figure 7 was inspired by an infamous visualization from
Reuters that showed gun deaths in Florida over time and noted when
the Stand Your Ground Law was enacted [35]. If a viewer briefly
views the Reuters visualization, it would appear that the introduction
of the Stand Your Ground law correlated with a decrease in gun
deaths. However, because the Y-axis is reverse ordered, the opposite
interpretation is correct. It is possible that the visualization designer



was aware of how difficult mental transformations are and further
assumed most people would not think to confirm that the visual-
ization aligned with their mental schema for graphs. This type of
intentional manipulation of mental schema assumptions is relatively
rare. However, accidentally requiring the viewer to make unneces-
sary mental computations is common, particularly when attempting
to visualize abstract information, such as uncertainty [36, 37, 44].
The issue of unintentionally requiring superfluous mental transfor-
mations highlights the importance of understanding the cognitive
process of visualization decision-making.

3.8 Decision-making and Behavior
The final stage of the Padilla et al. [41] model includes the decision-
making process and resulting behavior. The decision step can be
completed using either working memory, which produces a slower
decision, or quickly with negligible working memory [17]. Re-
searchers propose that fast decisions commonly utilize heuristics
or rules of thumb [23, 31]. We use these mental short cuts to avoid
reanalyzing every situation. Some heuristics are helpful and reduce
processing demands [23]. For example, we assume that all graphs
have correctly ordered Y-axes, which saves us time and energy
99.99% of the time. However, we run into issues when we apply a
heuristic in the wrong context, as is the case in Figure 7. In order
to override a heuristic, we must use working memory to inhibit the
rule of thumb and effortfully consider the information. In a perfect
world, visualizations would elicit fast and accurate judgments using
helpful heuristics. However, because the average person has little
experience using visualizations, as illustrated by the one-third of the
US population that has surprisingly poor graph literacy [20], it is
likely that the average viewer will use incorrect heuristics to inter-
pret novel visualizations. Visualization designers should consider
the trade-off between innovation and the catch-up time the general
public will need to develop appropriate mental schemas to accurately
interpret cutting-edge visualization techniques. For further reading
on the dual process model for decision-making, see Evans [17].

Decision science has identified many common heuristics [31].
Researchers have found that visualizations can be used to help peo-
ple overcome some heuristics that hinder decision-making, such
as anecdotal evidence bias [19] and side effect aversion [71, 72].
Researchers find that they can reduce these biases by visually repre-
senting probabilistic data [19, 71, 72].

4 CASE STUDY IN USING A COGNITIVE MODEL

To illustrate the utility of using a cognitive model to ground visu-
alization research in cognitive theory, the following section will
detail a prior experiment that evaluated ensemble hurricane track
forecast visualizations. Our prior work found that an ensemble visu-
alization technique produced fewer misinterpretations than the Cone
of Uncertainty, which is currently used by the National Hurricane
Association to depict storm trajectory [52]. More recently, we devel-
oped a modeling technique that outperformed our prior approaches
by selectively sampling ensemble members while preserving the
properties of the distribution [37], (see Figure 8). The new technique
allowed for annotation of the paths to include size and intensity.
Viewers were asked to rate the amount of damage that would occur
to an oil rig in the area of the hurricane forecast. We found that users
could effectively incorporate both the size and intensity information
from the visualization into their judgments. Additionally, we found
an influence of the number of paths displayed [37].

As this type of ensemble hurricane forecast visualization tech-
nique was relatively new, we wanted to test if it elicited any adverse
effects on decision-making before fully endorsing it. To identify the
possible adverse effects of the ensemble display, we focused on the
mental schema portion of the visualization decision-making model.
It occurred to us that given that this type of ensemble was new, view-
ers might not know the correct mental schema for interpreting the

(a) 7 tracks, unannotated (b) 15 tracks, unannotated

(d) 15 tracks, annotated(c) 63 tracks, unannotated

Figure 8: Example of the stimuli tested in Liu et al. [36]. Reprinted with
permission from “Visualizing uncertain tropical cyclone predictions
using representative samples from ensembles of forecast tracks.” by
Liu, L., Padilla, L. Creem-Regehr, S. H., House, D. (2018), IEEE
transactions on visualization and computer graphics.

ensemble display. After surveying widely available visualizations
that looked similar to the ensemble display, we realized that viewers
might be using a mental schema for navigation routes. We hypothe-
sized that, as in alternative navigation routes shown in applications
such as Google Maps, viewers might see each hurricane path as a
deterministic route (deterministic construal error [30]). However, for
the specific modeling technique that we used, each paths is a subset
of the runs of the model [36]. The overall distribution of paths is
intended to show the uncertainty in the forecasted path of the storm
rather than specific paths that the hurricane could take. To test if
viewers employed a deterministic route schema, we developed a task
to test a ”collocation” visual-spatial bias, which we predicted would
result from the schema. The collocation effect is when viewers as-
sign too much weight to the importance an ensemble member when
it is collocated with their point of interest. For example, if a viewer
believes that the hurricane paths are deterministic and is shown
only three paths (one of which hits her town), she might assume
the storm has a 33% chance of hitting her home. However, in the
same scenario, if she is shown 20 paths and one hits her home, she
might conclude that the chance the storm will impact her is only 5%,
which is a mental schema error. Although not tested directly, our
prior work demonstrated that viewers were sensitive to the number
of tracks displayed [37] and to cases where an ensemble member
was collocated with the point of interest [45].

We tested the hypothesis that increasing the number of lines would
reduce the over-weighting of an ensemble member that directly hit a
viewer’s point of interest. To do this, we created artificial hurricane
forecast images that closely visually match the images used in Liu
et al. [37] but that allowed for greater experimental control. In
the displays we generated, either one path intersected an off shore
oil rig (indicated with a black dot) or the oil rig remained in the
same location, but the previously collocated path was moved to the
opposite side of the distribution (see Figure 9). This experimental
design allowed for a more direct evaluation of the collocation of the
oil rig and hurricane track than in our prior work [45]. We tested
the influence of 9, 17, 33, and 65 hurricane paths on the collocation
effect. To control for changes to the distribution that may occur



oil rig off track oil rig on track

9 tracks

17 tracks

33 tracks

65 tracks

Figure 9: Example of the stimuli tested in Padilla et al. [43].

from moving one of the tracks, we generated straight paths and then
reflected the paths over the center line. The reflection resulted in
mirror images of each stimulus, which allowed for counterbalancing
of unintended changes to the distribution. Using the same task
as in Liu et al. [37], participants who were shown images with 9
hurricane paths demonstrated the most substantial bias, increasing
their damage ratings by 1.7 on a Likert scale (ranging from 1-7)
when an ensemble member intersected the oil rig location compared
to when it did not. We were able to significantly reduce this bias by
showing viewers images with 17, 33, and 65 hurricane paths [43].

In this case study, we examined the influence of a specific compo-
nent of the cognitive model and in doing so discovered the source of
one reasoning error with ensemble hurricane forecast visualizations.
The cognitive framework gave us a roadmap for possible locations of
errors and guidance for developing a task that tested a specific cog-
nitive process. If we had not focused on evaluating mental schemas,
we would not have examined the collocation effect, and we might
have prematurely endorsed this visualization technique. Further,
we would not have considered how the number of ensemble mem-
bers represented could influence reasoning errors without careful
reflection on cognitive models. Selecting the appropriate number
of ensemble members is an important issue that would have been

ill-considered without the incorporation of mental schemas into this
work. Finally, the Padilla et al. model [41] proposed two methods
for decision-making (Systems 1 and 2). Based on these insights, we
elected to find a visualization solution that did not require the viewer
to use additional working memory (System 1). The Padilla et al. [41]
model helped us to consider leveraging the heuristics that viewers
were naturally using to improve reasoning with visualizations, which
is an overarching goal throughout the visualization community.

5 CONCLUSION

It is vital to understand how our minds process visual information
when evaluating visualizations and developing new visualization
techniques. Cognitive models are helpful for providing an overview
of contemporary theories and can be used to ground visualization
research in empirically validated findings. We detailed the visualiza-
tion application of each component of the most up-to-date cognitive
model for decision-making with visualizations [41]. This paper is
the first to discuss how pressing topics in visualization research,
including innovation, validity, and replication are supported by an
understanding of how the human mind processes visualizations. Fur-
ther, we have expanded on the Padilla et al. [41] model by illustrating
each component with relevant examples to the visualization com-
munity. Finally, we used a case study to illustrate how to employ a
cognitive model to ground and guide visualization research. Given
the importance and large-scale impact of visualizations, their cogni-
tive underpinnings should be of supreme importance to visualization
researchers to ensure that visualizations are actually revealing the
true nature of information.
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