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Abstract—Data ensembles are often used to infer statistics to be used for a summary display of an uncertain prediction. In a spatial

context, these summary displays have the drawback that when uncertainty is encoded via a spatial spread, display glyph area increases in

sizewith prediction uncertainty. This increase can be easily confounded with an increase in the size, strength or other attribute of the

phenomenon being presented.We argue that by directly displaying a carefully chosen subset of a prediction ensemble, so that uncertainty

is conveyed implicitly, suchmisinterpretations can be avoided. Since such a display does not require uncertainty annotation, an information

channel remains available for encoding additional information about the prediction.We demonstrate these points in the context of

hurricane prediction visualizations, showing howwe avoid occlusion of selected ensemble elements while preserving the spatial statistics

of the original ensemble, and how an explicit encoding of uncertainty can also be constructed from such a selection.We conclude with the

results of a cognitive experiment demonstrating that the approach can be used to construct storm prediction displays that significantly

reduce the confounding of uncertainty with storm size, and thus improve viewers’ ability to estimate potential for storm damage.

Index Terms—Implicit uncertainty presentation, ensembles, ensemble visualization, sampling, uncertainty, hurricane prediction

Ç

1 INTRODUCTION

SIMULATION models have become a primary tool in the
generation of predictions, but projections from these

models often contain a high degree of uncertainty. This
uncertainty can have many sources. The unavoidable one
occurs when the system being modeled is governed by non-
linear dynamics that are sensitively dependent on initial
and boundary conditions. Other sources of uncertainty
include assumptions and approximations made in model-
ing the real system, parameter estimation, and the accumu-
lation of numerical errors [1].

Ensembles are one of the key tools for sampling the
space of projections that may be produced by a model con-
taining uncertainty. The use of models in weather predic-
tion is a good example. Typically, one or more weather
models are run multiple times, slightly varying initial con-
ditions or parameters for each run [2]. This results in an
ensemble of individual model-based projections, from

which meteorologists must determine an aggregate predic-
tion to be presented to the general public. Normally, this
will include both the predicted weather outcome, and a
measure of the certainty or confidence in the prediction.

Although ensembles are an essential tool for making pre-
dictions, they are difficult to use to create effective visualiza-
tions. Therefore, summary displays, attempting to convey
the ensemble’s statistics, are typically preferred, especially
when presenting the data to the general public [3]. On the
other hand, recent studies show that summary displays,
portraying the prediction along with its uncertainty, can
lead to inaccurate perception of the underlying data [4]. In
addition, any summary display requires an explanation and
legend, placing cognitive load on the viewer. In this paper
we explore approaches for making effective ensemble dis-
plays that avoid the limitations of both summary displays
and direct visualizations of the original data.

1.1 Summary Displays

Summary visualizations attempt to show at least the mean or
median of the ensemble, as well as some indication of the
spread of the data. For example Stephenson and Doblas-
Reyes used contour lines, over maps of the earth’s surface, to
show the location and spread of atmospheric pressure predic-
tions [2]. Whitaker et al. [5] developed the idea of contour
boxplots to show the median, spread, and outliers in ensem-
bles of spatial contours. Mirzargar et al. [6] extended the con-
tour boxplot idea to handle more general spatial curves. Most
recently, Liu et al. [7] demonstrated an approach to viewing
hurricane predictions that summarizes an ensemble of storm
spatial positions via a set of concentric confidence intervals.

When spatial spread is used as an indicator of uncertainty,
it can lead the viewer to incorrect conclusions. A case in point
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is the cone used by the USNational Hurricane Center (NHC)
to display the predicted path of a hurricane and its uncer-
tainty, as seen in Fig. 1a. TheNHCwebsite [8] states:

The cone represents the probable track of the center of a
tropical cyclone, and is formed by enclosing the area
swept out by a set of circles (not shown) along the forecast
track (at 12, 24, 36 hours, etc). The size of each circle is
set so that two-thirds of historical official forecast errors
over a 5-year sample fall within the circle.

Therefore, the width of the cone represents the 66 percent
confidence region. There is strong experiential evidence that
this well-known display leads to misperceptions about the
size of a storm-viewers tend to understand that the storm is
increasing in size with time. Further, viewers’ perceptions
may be biased by the presence of the centerline, and the dis-
play’s binary inside-outside view of uncertainty can lead to
overestimation of likelihood within the cone, and underesti-
mation outside [9]. These are not problems that can be fixed
by using methods like varying color and opacity to reveal
uncertainty. A study, using eye tracking and psychophysio-
logical measures, showed that using such methods to refine
the presentation of the uncertainty cone did not result in
any significant differences in viewer response [10]-appar-
ently the problems are inherent in the nature of this sum-
mary display.

1.2 Direct Ensemble Displays

While directly displaying the ensemble used to make a pre-
diction has the advantage of making all of the data visually
available, including its spatial distribution, it is fraught with
visualization problems. The most vexing of these is the
potential for the display to become a confused jumble, often
referred to as “spaghetti plots”. In working with point
ensembles, if individual points are too close together, dis-
play glyphs will overlap, making them difficult to interpret.

The work, presented here, builds on a mounting body of
evidence that a well constructed direct display of a predic-
tion ensemble can be superior to a summary display in both
conveying the spatial distribution associated with predic-
tion uncertainty, and in minimizing the confounding of spa-
tial attributes of a prediction with its uncertainty. A further
potential advantage of direct ensemble displays is that they
reduce the dimensionality of the display elements. Instead
of an ensemble of points being displayed using a summary
area or volumetric display, the points remain points in 2D
or 3D. Likewise, paths remain line segments. This has the
advantage, for point displays, that a glyph can be displayed

at each point, and used to convey additional information
about the ensemble member. For example, in a hurricane
position display, each ensemble member could be repre-
sented by a glyph encoding hurricane category (i.e., maxi-
mum windspeed).

If an ensemble of predictions is sampled in time, it
becomes a set of points. Directly displaying these points as
glyphs will typically create a layout problem, due to visual
clutter and overdraw. One sampling approach to avoid these
problems is through blue noise sampling, which gener-
ates a set of samples that are randomly located but
remain spatially well separated. For instance, Wei [12]
developed a multi-class blue noise sampling technique,
and more recently, Chen et al. [13] utilized this technique
to develop a visualization framework for multi-class scat-
ter-plot data. This sampling approach detects collisions of
points using a matrix encoding of the inter-class and the
intra-class minimum distances in such a way that both
the mixed samples and the samples of individual classes
are uniformly distributed. The approach is extendable to
support adaptive sampling by designing spatially-varying
functions, and constructing a distance matrix at each sam-
ple using these functions.

Even though using this approach can successfullymitigate
the visual clutter, there is no guarantee that the sampled dis-
tribution is nearly identical to the original distribution. For
our work, control of the distributions is essential, as our goal
is to use them to communicate the uncertainty in the predic-
tion implicitly. Our review of the sampling literature revealed
no existing technique that can generate a subset of points that
both accurately preserves the spatial distribution of the full
set, and effectively addresses the overdrawproblem.

1.3 Evaluation of Ensemble versus Cone Displays

The earliest attempt at using geospatially displayed path
ensembles to represent uncertainty in National Hurricane
Center predictions was by Cox et al. [11]. An example of
their visualization is shown in Fig. 1b. They conducted a
user study that showed that these visualizations lead
viewers to make estimates of the spatial spread of uncer-
tainty that are either indistinguishable from estimates
made from the cone display, or in some cases show a
tendency to improve users’ understanding of the spread
of likelihood outside of the cone boundaries. This was
achieved without the need for either explanation or ref-
erence to legends.

Recently, a between-subjects study by Ruginski et al. [4]
was conducted, requiring respondents to estimate potential
damage to an oil platform, when presented with one of five
hurricane prediction visualization styles: NHC cone with
centerline, centerline only, cone without centerline, cone
with opacity gradient, and path ensemble. Each respondent
was presented with one of these styles, seeing presentations
with various combinations of platform position and storm
path, and asked to make damage estimates at either 24 or 48
hours into the prediction.

Using the NHC cone with centerline as the base case,
the hypothesis was that there would be an effect of visuali-
zation type on how damage judgment relates to distance
from the prediction centerline. No effect was attributable
to the cone or fuzzy cone, but at the 48 hour time point the

Fig. 1. The National Hurricane Center’s uncertainty cone versus a direct
ensemble display.
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ensemble display produced peak damage estimates that
were significantly lower than all of the other cone styles
(p < 0:001), the curve of damage with distance from the
centerline was shallower, and it reached a much lower
peak. This can be seen dramatically in Fig. 2. Differences
in the curves at 48 hours invite the interpretation that sub-
jects thought that the storm was significantly larger when
looking at the cone display. Confirming this, a “Think
Aloud” session after the experiment, in which respondents
were asked to describe their ranking strategy, revealed a
definite perceived size-of-storm effect with all versions of
the cone, but almost none with the ensemble. A question-
naire administered following the trials showed that circa
70 percent of respondents reported seeing the storm
getting larger with the three cone versions, versus only
31 percent with the ensemble.

1.4 Contributions

The goal of this paper is to explore approaches to making
effective displays from prediction ensembles when the
ensemble is a set of points. Its main contribution is the elab-
oration of a methodological framework for either selecting a
subset from the original ensemble, or resampling to create a
new set that supports a variety of visualization approaches.
The resulting subset must have the following properties:

� It must correctly convey the key statistical spatial
properties of the original ensemble.

� It must be representative of the full ensemble if used
as a basis for scattered data interpolation.

� Points must be spatially well separated to minimize
occlusion.

The key idea, in our approach, is first to construct a space
in which ensemble members are uniformly distributed, and
then to conduct the selection or resampling processes in this
space before projecting back to the original space for display.

Fig. 3 shows an example of our methodology applied to an
ensemble of predicted hurricane paths supplied to us by the
NHC. The original ensemble (Fig. 3a) is sampled at 36 hours
into the prediction (Fig. 3b) to show possible hurricane posi-
tions in the prediction data. These are displayed using stan-
dard glyphs that the NHC uses to indicate hurricane
geospatial position and strength on their maps. We construct
a spatial warp (Fig. 3c) to transform the set of geospatial sam-
ples into a space where they are uniformly distributed
(Fig. 3d) that we call the UD space. We select a subset of the

Fig. 2. Mean hurricane damage estimates as a function of distance from
center centerline, for ensemble visualization (dotted lines), and the NHC
cone (solid lines) for the 24-hour and 48-hour time points. Data from the
study by Ruginski et al. [4].

Fig. 3. Our pipeline for sampling from a path ensemble to produce a well structured time-specific ensemble visualization.
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samples (Fig. 3e) for achieving a Poisson disk distribution in
UD space. Finally, the selected points are transformed back
into the original space (that we abbreviate OD space) and dis-
played geospatially using theNHCglyphs (Fig. 3f).

The primary contributions of this paper are:

� Development of a sampling technique that extracts a
representative subset of an ensemble of points that
not only accurately preserves the original distribu-
tion, but also maintains good spatial separation
among subset members.

� Development of two dynamic visualizations of a
time-sampled hurricane prediction ensemble. One of
them conveys the hurricane intensity by glyphs at
sample points, while the other conveys storm size by
circles whose radii are determined by the storm size.

� Improvement of a previous summary display by Liu
et al. [7], showing how our sampling technique can be
used to support smooth and accurate interpolation.

� Reporting on the results of a cognitive experiment to
compare participants’ interpretations of ensemble
visualizations to those of existing summary displays.

2 BACKGROUND

Here we provide a brief mathematical and algorithmic
foundation for our approach to finding representative sub-
sets from point and path ensembles.

2.1 Radial Basis Function (RBF) Interpolation

Radial basis function techniques [14] provide a powerful way
to interpolate scattered data [15]. RBF’s are used to build a
continuous function from a set of samples using radially sym-
metric kernel functions centered on the samples. In the RBF
work reported in this paper, we use the Gaussian kernel

fiðxÞ ¼ exp� ðx� x0Þ2
2r2

;

where r is the kernel spread parameter. This kernel has the
desired property of extrapolating to 0 away from the data,
and has infinite support, which is desirable for handling
broadly spread data. Many other kernel choices are possi-
ble, including some of finite support [16].

2.2 Subset Selection via Orthogonal Least
Squares (OLS)

Simply using RBF interpolation to form a field from a large
set of point samples is problematic for several reasons. Most
importantly, each one of the point samples must be consid-
ered to contain some uncertainty, so fitting a surface exactly
to these point samples will result in overfitting that will not
generalize the data based on its statistics. The Orthogonal
Least Squaresmethod [17] comes out of the machine learning
community, and is an approach to solving RBF interpola-
tion problems by selecting a small representative subset to
use as a reduced basis for interpolation [17], [18]. OLS starts
with an empty subset to which one point sample is added at
a time, by selecting the sample that minimizes the sum
squared RBF interpolation error (SSE) at the original sample
points. The forward selection algorithm [19] is a fast imple-
mentation of this algorithm.

2.3 Subset Selection via Weighted Sample
Elimination (WSE)

A completely different approach to choosing a subset of point
samples from the original set is to optimize for spatial layout,
rather thanmean squared interpolation error. Choosing a sub-
set of an ensemble that maintains the Poisson disk property
(i.e., that all randomly located points are tightly packed but lie
beyond a chosen Poisson disk radius r from each other) will
assure that the space under consideration is being sampled in
an optimal way, in the sense of signal processing theory [20].
A number of techniques have been developed to generate
Poisson disk samplings over a spatial domain, including
acceleration methods using spatial data structures [21], and
varying the disk radius over a domain using importance
measures [22].

Quite recently, Yuksel [23] developed theweighted sample
elimination approach, which starts with an existing sample
set, and returns a radius and a subset of a specified size that
has the Poisson disk property for this radius. This approach is
ideal for our purposes, which is to determine a representative
subset of a spatially distributed ensemble. The approach uses
a kd-tree structure to determine a set of neighbors for each
point, and a heap data structure organized by a sum of
weights representing the accumulated distances of each point
from its neighbors. The algorithm iteratively discards the
point with the highest weight, recomputes the summed
weights, and reorganizes the heap until the desired number
of samples is reached. The Poisson disk radius is then themin-
imumdistance between the remaining points.

3 METHODOLOGY

The individual steps of our approach for selecting a repre-
sentative subset of N points from an ensemble of M points
is given below:

1) Determine the bounding region of the M points in OD
space.
All work is done with respect to the bounding region
of the ensemble points in the original density (OD)
space.

2) Compute a continuous density field over the bounding
region.
Within this bounding region, we use ensemble
points to estimate a continuous density field, as
explained below in Section 3.1.

3) Construct a warp from OD to UD space.
We then use this field to construct a warping func-
tion that maps the points in OD space to a space in
which the density per unit area is constant, i.e., the
uniform density (UD) space. We discuss the con-
struction of this mapping function in Section 3.2.

4) Map each point from OD space to UD space.
This warping function is used to map each point
ðxi; yiÞ in OD space to ðui; viÞ in UD space, such that
samples in UD space are uniformly distributed.

5) Select a set of N < M points in UD space.
A point selection algorithm is then used in UD
space to select a subset of samples, as explained
in Section 3.3.

6) Project the N selected points back to OD space and
display.
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Finally, the selected points in UD space are mapped
back to OD space for display, as discussed in Section
3.4.

As long as the selected subset is uniformly distributed in
UD space, we have a guarantee that the corresponding sam-
ple set in OD space is representative of the statistical prop-
erties of the original ensemble. Note, that this approach is
insensitive to whether or not the original distribution is
unimodal or multimodal. In either case, the distribution we
end up with in UD space is uniform, while the inverse map
back to OD space restores the original modality.

3.1 Computing the Continuous Density Field

We compute the density field over the sample space using
radial basis function interpolation, after assigning a local
data density value to each sample point. We avoid using a
grid-based discretization for the density estimation, because
the input data from the original ensemble may be distrib-
uted in a highly non-uniform way, which can lead to sam-
pling issues. Instead, we directly use the samples of the
original ensemble utilizing a k nearest neighbors (kNN)
approach [24].

Given a sample point i with position xi ¼ ðxi; yiÞ, from a
data set of sizeM, the kNNdensity si at this point is defined as

si ¼ k

Mpri
2
;

where ri is the radius of the circle with center at xi that min-
imally encloses the k nearest neighbors of the point i. A kd-
tree can be used for rapid determination of the k nearest
neighbors of each sample point.

However, interpolating the density field from all of the
points in the ensemble would result in overfitting. There-
fore, we use the forward selection implementation of the
OLS algorithm [19] to select a subset that minimizes mean
squared interpolation error. For each sample point i we
compute an RBF spread parameter

ri ¼ b
wffiffiffiffiffi
si

p ; (1)

that adapts to the local density measure. Here,w is the largest
dimension of the bounding region in OD space, and b is a
user settable constant. In this way, the RBF interpolation algo-
rithm can handle scattered datawithwidely varying density.

It is possible to use the subset of the original points
obtained with this procedure as the subset for displaying
the ensemble as well. However, by design, this subset is
more uniformly distributed than the original data set.
Therefore, it does not provide a good representation of the
statistical properties of the original ensemble. Furthermore,
this subset can also contain points that are too close
together, resulting in glyph occlusion. These two problems
can be clearly seen in Fig. 4. Comparing the original ensem-
ble of time-specific hurricane position predictions (Fig. 4a)
to the subset of 100 sample points chosen by the OLS algo-
rithm (Fig. 4b), it is apparent that the resulting subset is too
uniform and some points are too close together. These are
limitations of not only the OLS approach, but any sampling
algorithm selecting a subset of points in the space they are
originally living in. To address these limitations, we per-
form our sample selection in UD space.

3.2 Mapping from OD to UD Space

There are a number of ways to construct a mapping

OD;UD � R2; f : UD ! OD; ðx; yÞ7!ðu; vÞ;

but not all of these result in a warp suited to our purposes.
Our warp function shouldminimize both shear and non-uni-
form scaling, since the selection process in UD space will be
based on euclidean distances between the points. Locally, the
mapping should be as close as possible to uniform scaling.

It is possible to define a mapping from a non-uniform
distribution to a uniform distribution using a cumulative
density function. In R2, the probability density p at position
ðx; yÞ can be written as

pðx; yÞ ¼ pxðxÞpyðyjxÞ;
where

pxðxÞ ¼
Z y

�1
pðx; yÞdy and pyðyjxÞ ¼ pðx; yÞ=pxðxÞ;

yielding

uðx; yÞ ¼
Z x

�1
pxðxÞdx; and vðx; yÞ ¼

Z y

�1
pyðyjxÞdy:

Although this mapping results in a uniform distribution, it
introduces a great deal of shear along the v axis, such that
points that are distant from each other in OD space can be
moved near to each other in UD space, and vice versa.
Therefore, the Euclidian distances between points in UD
space will not be a good metric for selecting a subset.

The approach that we have found to be most useful is a
Gauss-Seidel style relaxation process. We begin with splitting
the OD space into a number of grid cells with uniform sizes.
In UD space, this grid should be deformed, such that the area
of each grid cell should roughly correspond to the density
within the grid cell in OD space. The deformation of this grid
represents our warping function. A point ðxi; yiÞ in a grid cell
in OD space is mapped to ðui; viÞ in the corresponding cell in
UD space, usingmatching barycentric coordinates.

3.2.1 Relaxation for Grid-Based Warping Function

Without loss of generality, let us assume that the initial grid
is a square with dimensions S � S. Since UD space has uni-
form density, each deformed grid cell in UD space should
have the same average density

Fig. 4. An optimal subset chosen using OLS in the original space, is too
uniformly distributed.
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da ¼
PS2

j¼1 dj

S2A
;

where dj is the initial density of the cell j and A is the initial
area of a grid cell. In practice, we estimate the initial density
dj of a grid cell by sampling at the center of the cell, using
the kNN density field described in Section 3.1. The target
area of a cell Aj can be written as

Aj ¼ A
dj
da

:

For computing the deformed grid, we assign a target length
to each edge of the grid using the Aj values of the neighbor-
ing cells. The target length of an edge k on the perimeter of
the grid that has a single cell neighbor j is

Lk ¼ L

ffiffiffiffiffiffi
Aj

A

r
;

where L is the initial length of a grid edge. For other edges
that are shared between two cells, we use the average of the
two target length values computed for each face. We also
construct two diagonal edges for each cell to minimize shear
during the relaxation. The target lengths of the diagonal
edges are computed similarly, using the target areas of their
cells. The structure of a single cell is shown in Fig. 5a.

Our relaxation process changes the length of each edge k
towards the target length Lk, at each step t, by moving its
vertices along the edge direction. Let pt

i and pt
iþ1 be the posi-

tions of the two vertices of an edge k at relaxation step t, as

shown in Fig. 5b. The updated position of the vertex ptþ1
i

due to the update operation for edge k can be written as

ptþ1
i ¼ pt

i þ a
Lt
k � Lk

2

� �
pt
iþ1 � pt

i

Lt
k

� �
; (2)

where Lt
k ¼ pt

iþ1 � pt
i

�� �� is the length of the edge at relaxation
step t and 0 < a � 1 is a user adjustable acceleration factor,

such that if a ¼ 1, Ltþ1
k ¼ Lk at the end of the update for

edge k.

3.2.2 Hierarchical Relaxation

For achieving a high quality warping function, we need to
have a high-resolution grid. But, when the displacement of
the grid vertices due to the deformation of the grid is much
larger than the length of a grid edge, the relaxation process
can result in crossed edges, inverting cells and thus chang-
ing the grid’s topology, leading to instability. To avoid this,
we use a hierarchical progressive-refinement approach, as
illustrated in Fig. 6. We first use relaxation to compute a
low-resolution deformed grid. Then, we subdivide the cells
and continue the relaxation process for the subdivided grid

with higher resolution. This way, large deformations of the
grid are handled using lower resolution grids and fine
details of the deformation are introduced using relaxation
of higher resolution grids.

The relaxation process that we use to obtain a solution at
a level in the hierarchy has two stopping conditions. First,
we monitor the sum of squared errors (SSE), defined as the
sum of squared differences between desired areas and cur-
rent areas of all grid cells

SSE ¼
XS2k
p¼1

ðAD
p �ApÞ2;

where Sk denotes the grid dimension at the kth level in the
hierarchy. We terminate the relaxation if the SSE is less than
a small threshold. The second stopping condition is the
detection of an inverted cell. When a target cell area is very
small, the relaxation process can still produce inversion. If an
inverted cell is detected, we restore the system to its previous
state and terminate the relaxation for that level of the hierar-
chy and continue the relaxation at the next lower level.

At each stage of the refinement process, we try to adjust
the area of each grid cell so that its density equals the aver-
age density of the OD domain. In our implementation, we
set the grid dimensions as powers of two, so we associate
the finest grid dimensions S � S withM samples using

S ¼ blog2 gMc; (3)

where g is a user adjustable fraction between 0 and 1. If S0 is
the dimension of the grid at the coarsest level, our method
requires

T ¼ 1þ log2 S � log2 S0 (4)

hierarchical levels to compute the highest resolution
deformed grid.

3.3 Selecting a Representative Subset

In order to select a representative subset, we first transform all
samples in OD space to UD space. Subsequently, we choose a
representative subset of the samples in UD space using either
the Orthogonal Least Squares algorithm explained in Section
2.2 or the Weighted Sample Elimination method presented in
Section 2.3. These two methods select subsets with different
features.

The OLS method is a selection approach based on a con-
struction of an RBF system. To avoid the high computa-
tional cost of the naive OLS algorithm, we utilize Orr’s
forward selection algorithm [19], which monitors the reduc-
tion in SSE of the RBF system, aimed at selecting the mini-
mal subset satisfying a specific error criterion. While
building the RBF, the righthand side of the linear system is
assigned by computing simplicial depth values [25] of the

Fig. 5. Model used for a grid cell and its edges.

Fig. 6. Initial, and three levels of hierarchical refinement for computing
the warping function.
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original samples. Simplicial depth measures the centrality
of a point within a point cloud. A sample with bigger sim-
plicial depth value is considered to be more representative,
and thus will tend to have a higher chance to be selected by
the OLS algorithm. Fig. 7a shows the entire ensemble, and
Fig. 7b shows the subset selected by the OLS algorithm.
This subset is concentrated in the central region of UD
space, and thus is tightly clustered in OD space.

On the other hand, the WSE algorithm attempts to select
a subset that maintains the Poisson disk property. There-
fore, the samples in the chosen subset should be uniformly
spread over the entire UD space, and thus are more broadly
spread in OD space, as can be seen in Fig. 7c. In fact, any
algorithm that can produce Poisson disk sample sets can be
integrated into our framework. However, we chose WSE
because it is the most efficient published algorithm that can
produce a Poisson disk subset from an existing set. Other
Poisson disk algorithms, e.g., dart throwing, generate new
samples rather than selecting from an existing set. We dem-
onstrate our approach using WSE because it performs as
well as other alternatives, is fast, and easy to implement.

In the WSE algorithm, the sum of weights from neigh-
bors of a sample determines the sample’s depth in a heap
data structure. Because samples near the boundary of UD
space have no neighbors outside of the boundary, their
weights are biased, making them more likely to be kept in
the selected samples. To address this problem, we extract
the concave hull of the points collection, and randomly gen-
erate extra samples in the region outside of this hull, so that
the density of the boundary region matches the average
density of UD space. These generated samples are consid-
ered while computing the weights of the original samples
but are never selected by the algorithm.

3.4 Inverse Mapping from UD to OD Space

Inverse mapping of the original points from UD space to
OD space is trivial, since they simply map back to their orig-
inal coordinates in OD space. However, if it is desired to
resample in UD space to create new points, an inverse map-
ping is required to find the corresponding positions in OD
space. The inverse mapping can be defined similarly to the
forward map, but starting with the deformed grid. Given a
point ðui; viÞ in UD space, we first find the deformed grid
cell that contains this point. Since our relaxation procedure
ensures that no grid cell is either inverted or has crossing
edges, there exists a unique deformed grid cell for any point
in UD space. A space partitioning structure can be utilized

here for quickly finding the corresponding cell. Then, bary-
centric coordinates can be used to project the point to the
corresponding undeformed OD space cell.

4 VALIDATION AND VISUALIZATION DESIGN

In this section, we show experimental results demonstrating
the utility of our proposed technique to choose a representa-
tive subset of time-specific hurricane positions, from a pre-
diction path ensemble. We first demonstrate that these
chosen subsets closely reproduce the spatial distribution
encoded by the full point ensemble. We then show that our
approach can be used to support two forms of representa-
tive visualization superimposed on a map: a point ensemble
display using glyphs to show a set of predicted storm loca-
tions annotated with additional storm information, and a
summary display showing three levels of risk region, simi-
lar to the displays developed by Liu et al. [7].

We demonstrate our approach by using the NHC’s
ensemble of 1,000 predicted paths for Hurricane Isaac. The
prediction was made about 36 hours before the hurricane
made landfall in Louisiana, on August 29, 2012. Since the
paths can be sampled in time and encode predicted storm
characteristics, such as wind speed and storm size at regular
time intervals, they can be used to produce spatiotemporal
visualizations. We have already shown an example of our
complete process, using this NHC prediction, in Fig. 3.

There are five user settable parameters in our approach. In
all of our results, shown below, these parameters are set as fol-
lows. To determine the number of nearest neighbors for the
kNN density calculation in Equation (3.1), we let
k ¼ b0:01Mc, where M is the data set size. In Equation (1),
determining radial basis function spread for the kNN density
calculation, we set the scaling parameter b ¼ 0:01. In deter-
mining S, the grid dimension at the finest level of the hierar-
chy, we set g ¼ 0:2 in Equation (3). Thus, given 1,000
predicted hurricane locations, our final grid resolution is
S ¼ 128. We chose the coarsest grid resolution to be S0 ¼ 8, so
there are T ¼ 5 levels in our hierarchy (Equation (4)). The
acceleration constant used in performing the relaxation algo-
rithm, defined by Equation (2), was set to a ¼ 0:066. For all of
our demonstration images, the OD space ismeasured geospa-
tially, by latitude and longitude. The UD space is centered at
the origin, with dimensions of one unit by one unit: ½�0:5; 0:5�.

Fig. 8 shows an example of how the choice of the OLS
versus the WSE selection algorithm affects the layout of the
selected samples. We assign the sizes of the chosen subsets
based on a heuristic that attempts to control the tightness of

Fig. 7. Comparison of samples selected via OLS and WSE algorithm in UD space.
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spacing. Given the area of a bounding region B of the origi-
nal set of samples, the size of the subset is determined as
N ¼ dB, where d denotes the desired number of samples
per unit area. In our implementation, d is set to be 0.72 for
the OLS algorithm and 1.45 for the WSE algorithm, reflect-
ing the relative tightness of spacing between the two
approaches. Comparing Fig. 8b, which has 21 points, with
Fig. 8c, which has 42, the OLS algorithm tends to produce a
subset that is more concentrated around the most likely
position of the hurricane, while the WSE algorithm tends to
produce a subset that is more widely spread, indicating not
only the most likely storm position but the possibility of
outliers. The reasons for these differences have already been
discussed in Section 3.3.

It is important to note that while the original ensemble
in Fig. 8 appears to spread over an even larger area than
both of the subsets generated by OLS and WSE, these out-
lier samples away from the center actually appear with
very low probability and the density of the ensemble sam-
ples near the center is completely imperceivable due to
occlusion. Therefore, the visualization of the full ensemble
can be misleading.

While the two selection algorithms produce subsets with
different layouts, both subsets are representative of the orig-
inal ensemble. One way to verify this is to test if a selected
subset can be used to reproduce a distribution supported by
the original ensemble. To make this comparison, we built
simplicial depth fields from both the original ensemble and
each of the selected subsets. Since simplicial depth provides
a measurement of the centrality of a point in a collection, by
comparing two simplicial depth fields, we are able to evalu-
ate the representativeness of the subsets. Simplicial depth
values are normalized to the range ½0; 1� and color coded for
display. Fig. 9a shows a simplicial depth field interpolated
from the original ensemble, Fig. 9b from the OLS subset,
and Fig. 9c from the WSE subset. To make a visual compari-
son, we subtract the grayscale value of the OLS and WSE
images from that of the original ensemble image, with the
differences displayed in Fig. 9d and Fig. 9e. Both of those
subtractions give a variation of simplicial depth values
between ½�0:05;þ0:05� out of a possible range of ½�1;þ1�.
Thus, the maximum variation is only 5 percent of the range
of simplicial depth values. Therefore, we can conclude that
both of the two selected subsets are highly representative of
the original sample set, and the choice of the selection algo-
rithm can be left to the user in order to satisfy their visuali-
zation requirements.

Although this is not the main thrust of this paper, because
the subsets selected by our approach are highly representa-
tive of the original ensemble, they can be used to smoothly
interpolate spatio-temporal information carried by the origi-
nal ensemble, and used to generate summary visualizations.
By interpolating the simplicial depth field of a selected sub-
set, we can produce a visualization showing the geospatial
spread of hurricane strike likelihood at a particular point in
time, in the form of concentric ellipsoidal confidence inter-
vals. In a recent paper, Liu et al. [7] produced confidence
interval visualizations by fitting ellipses to the simplicial
depth field computed from the full ensemble. The top row of
Fig. 10 shows a time sequence produced utilizing their pro-
posed approach. To make their method frame-to-frame
coherent, they required the use of a non-linear stabilizing fil-
ter to reduce temporal instability in the ellipse orientation.
Such a filter could introduce arbitrary errors in the visualiza-
tion. Using our approach, with the OLS selection algorithm,
we are able to produce very similar visualizations directly
from the interpolated simplicial depth field, without resort-
ing to ellipse fitting. The results are not only faster to com-
pute but remain stable, without the use of a filter, when
viewed as a time sequence. The bottom row of Fig. 10 shows
such a time sequence produced utilizing our algorithm.

The main goal of our work was to produce uncluttered,
nicely spaced, direct ensemble displays. One attribute of

Fig. 8. Comparison of samples selected via OLS and WSE algorithms, Hurricane Isaac prediction at 36 hours.

Fig. 9. Comparison of simplicial depth fields of original full ensemble with
subsets selected via the OLS and WSE algorithms.
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this style of display is that glyphs carrying information, in
addition to position, can be placed at the location of each
sample without concern for occlusion. To demonstrate that
our proposed technique has great potential to support this
type of visualization, we created a direct ensemble display
by placing glyphs indicating predicted storm intensity at
each of the predicted locations. Fig. 11 shows two such dis-
plays at 36, and 48 hours into the prediction. These displays
are intended to show the most likely storm position, while
indicating that outliers are more and more likely as time
progresses into the prediction. Because we wanted to clearly
show outliers, we chose the WSE algorithm to obtain the
subsets used in this particular case.

We demonstrated these visualizations to meteorologists
at the NHC and one of their important critiques was that this
visualization did not have enough coverage of the area likely
to experience hurricane force winds. A second concern was
that individual elements of the ensemble are highly salient,
potentially misleading viewers into paying too much atten-
tion to certain glyphs instead of the overall distribution.

To address these concerns, we created an animated
visualization that continuously adds new ensemble mem-
bers to the display while slowly fading out glyphs that
have been on the screen for a while. Over time this allows
many more ensemble members to be displayed, without
creating clutter, and, since they are always fading away,

also deemphasizes any particular glyph. Within this visual-
ization, areas with a high concentration of samples tend to
be more opaque than those with low concentration. Thus,
more opacity indicates a higher level of certainty. This was
implemented by initially randomly selecting opacities for
all of the samples. Samples are divided into two groups,
one group with non-zero opacity that is on the display,
and one group with zero opacity that is not displayed.
Each time the opacity of a displayed sample is decreased
to zero, we pick a new sample from the zero opacity group
whose simplicial depth value is closest to that sample, and
display it at maximum opacity. This ensures that the distri-
bution at each time frame is as close to the distribution of
the full ensemble as possible. Fig. 12c shows a snapshot of
such a visualization.

Another critique from the NHC meteorologists was
that even though our glyphs depict a set of predicted
positions of the center of the storm annotated by storm
strength, they do not show the extent of the area poten-
tially affected by hurricane force winds. To address this
concern, we developed a visualization that uses circles
entered at the selected samples whose radii correspond
to predicted distance from the center at which 50 kn
winds are predicted. We employ the same pipeline used
for drawing strength glyphs to create a dynamically
updating display. A snapshot of this style of visualiza-
tion is shown in Fig. 12d.

We are confident that our approach can be easily imple-
mented to operate in real time. We did not conduct timing
studies, since our research software was not fully integrated
and used Matlab for some calculations. Even with this
approach, all computations are done in under a second.

Fig. 10. Simplicial depth field displays over time, comparing Liu et al.’s
ellipse fitting [7] with interpolation from an optimal subset.

Fig. 11. Glyph displays of the prediction, over time, using ensemble sub-
sets from the WSE algorithm.

Fig. 12. The four visualization styles studied in the cognitive experiment. The blue dot indicates the position of an oil rig platform.
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5 EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of our visualizations in
helping users to estimate hurricane risk, we conducted a
cognitive experiment comparing each of the three new visu-
alizations described above with a visualization simply
showing the 66 percent confidence interval for the expected
storm center. We chose the 66 percent CI as the standard for
comparison because it is most similar to current practice in
communicating hurricane forecasts (i.e., the NHC uncer-
tainty cone, see Fig. 1a).

We started from historical NHC predictions of five US
Gulf Coast hurricanes. Three of thesewere translated slightly
to assure that the predicted storm center was offshore at
48 hours from the time of the forecast. Four visualizations
were generated for each storm, taken at 48 hours. Two of
these visualizations were static summaries of hurricane loca-
tions, the 66 percent confidence interval (66 CI) (Fig. 12a),
and the 33, 66, and 92 percent concentric confidence intervals
(CI Bands) (Fig. 12b). The other two were animated displays
of ensembles of points. Both ensemble visualizations repre-
sented the storm location, with one using glyphs to show the
storm strength (Icons) (Fig. 12c) and the other representing
the storm size (Splats) (Fig. 12d). In the experiment, partici-
pants were informed of the contents of each type of display
by showing brief descriptions. For instance, before seeing
the splats condition, they were told “You will see a series of
circles that will appear and disappear. Each circle represents
a possible location and size of the storm”.

5.1 Experimental Methodology

133 participants from the University of California, Santa Bar-
bara and the University of Utah were first randomly
assigned to a visualization type, and provided with a
description of that visualization and instructions for the task.
Modeled after the experiment by Ruginski et al. [4], partici-
pants were shown one of the forecast display techniques that
additionally included a superimposed blue dot indicating
the location of an offshore oil platform (see Fig. 12), using E-
Prime 2.0.10.353 software [26]. Displays were presented on
either a Dell U2412MBmonitor or an Asus VG248monitor in
sRGB color mode with pixel resolutions of 1;920� 1;080. The
offshore oil platform was located at one of eight locations
defined relative to the center of the forecast. The participants
were given a description of an oil platform and instructed to
estimate the level of damage that the platform would incur
based on the likelihood of the storm affecting the platform
and the strength of the storm in the affected region. Below
the display was a Likert scale ranging from 1 (no damage) to
9 (severe damage), and the participants entered their
responses on a keyboard. This scale was chosen to provide
participants with a means of hurricane interpretation that
would simulate a real world decision task. Each participant
completed 40 trials in which the locations of both the plat-
form and hurricane were randomly presented, for their visu-
alization type only. Finally, participants were asked a series
of seven true/false questions to assess their understanding
of the displays, includingmisconceptions.

A multilevel model (MLM) was fit to the damage judg-
ment data using Hierarchical Linear Modeling (HLM 7.0)
software and restricted maximum likelihood estimation

procedures [27], [28]. Multilevel modeling is a generalized
form of linear regression that is used to analyze variance in
experimental outcomes on both individual (within-partici-
pants) and group (between-participants) levels. A MLM
was appropriate for modeling our data and testing our
hypotheses for two major reasons: 1) MLM allows for the
inclusion of interactions between continuous variables (in
our case, distance) and categorical predictors (in our case,
the type of visualization); 2) MLM uses estimation proce-
dures appropriate for partitioning variance and error struc-
tures in mixed and nested designs (repeated measures
nested within individuals in this case).

Level 1 of our multilevel model is described by

Damageij ¼ b0j þ b1j �Distanceij þ rij;

and level 2 by

b0j ¼ g00 þ g01 � Iconsj þ g02 � Splatsj

þ g03 � CIBandsj þ u0j; and

b1j ¼ g10 þ g11 � Iconsj þ g12 � Splatsj

þ g13 � CIBandsj;

where i represents trials, j represents individuals, and the g
terms are the regression coefficients. The error term rij indi-
cates the variance in the outcome variable on a per trial
basis, and u0j on a per person basis [29].

Damage rating, although an ordinal variable by defini-
tion, was treated as continuous in the model because it con-
tained over five response categories [30]. For the distance
variable, we analyzed the absolute value of oil rig distances,
regardless of which side of the hurricane forecast they were
on, as none of our hypotheses related to whether oil rigs
were located on a particular side. We divided distance by
10 prior to analysis so that the estimated model coefficient
would correspond to 10 km changes (rather than a 1 km
change). The type of visualization was dummy coded such
that the 66 percent CI was the reference group, allowing for
comparison of each visualization to the 66 percent CI. The
analysis was collapsed over the five hurricane forecasts.

The mixed two-level regression model tested whether the
effect of distance from the center of forecasts (level 1), var-
ied as a function of visualization (level 2). We hypothesized
that individuals who viewed the CI Band, Icon, and Splat
visualizations would make damage judgments that more
gradually change as a result of distance compared to the 66
percent CI, demonstrating interpretations more in line with
an uncertainty distribution than the 66 percent CI.

5.2 Damage Judgment Results

The analysis indicated that average damage ratings were
around the maximum possible (9.13) at the center of the 66
percent CI as shown in Table 1. The intercept terms in
Table 1 reflect the average value for the 66 percent CI
whereas the additional coefficients represent the difference
from this value. Similarly, hypothesis tests for the intercept
term reflect whether the average value for the 66 percent CI
is meaningfully different from zero; hypothesis tests for
other coefficients represent whether the difference between
the specified group and the 66 percent is meaningfully
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different from zero. The average damage rating value is esti-
mated above the top of the scale since individuals never
made a damage judgment exactly at the center of the hurri-
cane. Compared to the 66 percent CI, damage judgments
made using the CI Bands at the center of the hurricane fore-
cast were 1.43 lower on average, and judgments made using
the Icon were 2.53 lower on average. Interestingly, average
damage ratings made at the center of the forecast using the
Splat visualization were not meaningfully different from
those made using the 66 percent CI.

Second, our analysis revealed a significant association
between distance and damage rating for the 66 percent CI
visualization. There was a 0.21 decrease in damage judg-
ment per 10 km on average as shown in Table 2. This was
expected, given that individuals had little information aside
from distance when making damage judgments using this
visualization. More importantly, both the CI Bands visuali-
zation (0.157 decrease per 10 km, see Fig. 13a) and the Icon
visualization (0.116 decrease per 10 km, see Fig. 13b) dem-
onstrated a significantly less strong association between dis-
tance and damage rating than the 66 percent CI. Lastly, the
relationship between distance-from-center and damage rat-
ing for the Splats visualization did not differ significantly
from the 66 percent CI visualization (see Fig. 13c).

5.3 Post-task Questionnaire Results

In a post-task survey, participants were asked a series of
seven true/false questions (given in Table 3). We com-
pared each of the other visualization conditions to the 66
percent CI condition using chi-squared tests of
independence.

Responses to Questions 2, 3, and 4 did not differ signifi-
cantly, indicating that across all conditions, most partici-
pants understood that the displays indicate 1) that the area
being shown has a chance of being damaged, 2) where the
center of the storm is likely to be, and 3) that the forecasters
are uncertain of the storm’s location.

Responses to Question 1 indicated that participants in the
CI Bands group, x2ð1; N ¼ 65Þ ¼ 4:99; p ¼ 0:03, and partici-

pants in the Splats condition, x2ð1; N ¼ 62Þ ¼ 10:09; p ¼
0:001, were more likely to endorse the statement that the
forecast shows a distribution of possible locations.

Importantly, although only the Splats condition showed
the size of the hurricane, there was no significant difference
between conditions in endorsement of Statement 5 that the
forecast visualization indicates the size of the hurricane.
Participants in the 66 percent CI condition in particular, had
very similar endorsement rates of this statement to partici-
pants in the Splats condition, indicating a strong misconcep-
tion that size of glyph indicates size of hurricane.

There does not seem to be strong misconception that the
size of the glyph in the 66 percent CI condition indicates inten-
sity (see responses to Statement 6). Optimistically, most par-
ticipants in the Icon display condition correctly indicated that
this display showed intensity and were significantly different
from the 66 percent CI condition, x2ð1; N ¼ 62Þ ¼ 47:23;

p < 0:001. However the CI Bands condition, x2ð1;N ¼ 65Þ ¼
10:11; p ¼ 0:001, and the Splats condition, x2ð1;N ¼ 62Þ ¼
25:06; p < 0:001, were also more likely (than the 66 percent
confidence interval group) to endorse the statement that the
displays showed intensity of the hurricane, although neither
of these displays actually shows intensity.

Finally, although none of these displays shows the passage
of time, participants in the two animation conditions (Splats,

x2ð1;N ¼ 62Þ ¼ 16:93; p < :001; Icon, x2ð1; N ¼ 62Þ ¼ 16:93;
p < 0:001) weremore likely to endorse Statement 7 compared
to the 66 percent CI condition. This result suggests a possible
misconception that change of time in a display indicates
change over time in the forecast.

5.4 Experiment Summary

Overall, our analysis revealed that the CI Bands and Icon visu-
alizations were interpreted as changing more gradually as a

TABLE 1
Intercept Level 1, b0

Fixed Effect Coeff. Std Err t-ratio DOF p-value 95% CI

Intercept 2, g00 9.129 0.177 51.68 119 < 0.001 (8.78,9.48)
Icons, g01 �2.525 0.371 �6.79 119 < 0.001 (�3.26, �1.79)
Splats, g02 0.159 0.221 0.72 119 0.473 (�0.27, 0.59)
CI Bands, g03 �1.433 0.353 �4.06 119 < 0.001 (�2.12, �0.74)

Average damage judgments made at the center of the forecasts. Main effect
(intercept) references 66 percent CI visualization. The Table summarizes the
comparison of each visualization to the 66 percent CI.

TABLE 2
Slope Level 1, b1

Fixed Effect Coeff Std Err t-ratio DOF p-value 95% CI

Intercept 2, g10 �0.210 0.006 �32.36 4793 < 0.001 (�0.22,-0.19)

Icons, g11 0.094 0.015 6.31 4793 < 0.001 (0.06, 0.12)

Splats, g12 �0.003 0.009 �0.36 4793 0.720 (�0.02, 0.01)

CI Bands, g13 0.053 0.018 2.94 4793 0.003 (0.02, 0.09)

Effect of a 10 km change in distance on damage ratings. Main effect (intercept)
references 66 percent CI visualization. The table summarizes the comparison
of each visualization to the 66 percent CI.

Fig. 13. Mean damage ratings as a function of distance from the center of the storm. Each visualization is compared to the 66 percent CI.
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function of distance than the 66 percent CI visualization. This
suggests that the former two were interpreted more like an
uncertainty distribution than the 66 percent CI, and is similar
to the effect seen with the path ensemble displays used in the
earlier experiment by Ruginksi et al. [4]. However, the Splats
visualization was interpreted similarly to the 66 percent CI,
both in terms of average overall damage rating provided
across all trials and the change in damage ratings that
occurred as a function of distance-from-center. Although the
CI bands and Icon visualizations were interpreted as more
like an uncertainty visualization, and alleviated somemiscon-
ceptions, answers to the questionnaire showed that othermis-
conceptions about these displays remained. For example,
many viewers saw the animated displays as indicating the
passage of time. An interesting and unexpected result was
that, even though they were not visually similar, the 92 per-
cent CI and Icon displays elicited remarkably similar judg-
ments. This indicates that decisions are likely driven by the
spatial properties, not just the ensemble or summary nature of
the display, and suggests a direction for future study.

6 CONCLUSION

We first made the case that the direct display of an ensemble
of predictions can be superior to a statistical summary dis-
play for conveying the uncertainty in a prediction. The
problem is that such displays can be cluttered and difficult
to interpret if the original ensemble is too large. We then
presented a sampling approach that extracts a representa-
tive subset of an ensemble of points while maintaining the
statistical spatial distribution of the full ensemble, and
showed how such a subset can be used to construct an
ensemble-based visualization, supporting the superimposi-
tion of additional information on each sample via glyphs.
As a byproduct, we also showed how the subset can be
used as a basis for interpolation to create nicely-structured
summary displays.

We have demonstrated our approach using hurricane
predictions as an example, showing how our ensemble
approach can be used to make time-specific visualizations
of hurricane position, strength, and size. None of the cur-
rently produced visualizations from the National Hurricane
Center are either time-specific, or able to simultaneously
show the distribution of multiple storm attributes.

Additionally, we conducted a cognitive experiment to
compare our ensemble visualizations to summary displays
by examining participants’ estimations of potential storm
damage. The results indicate that an ensemble display using
icons showing storm intensity, based on a representative

subset of samples, can be effective in helping users to more
correctly estimate the risk-which inherently includes esti-
mating both the likelihood of a storm hitting and the inten-
sity of the storm. This result is consistent with earlier
experiments showing that ensemble displays are effective
in reducing confusion between uncertainty and storm size.

In choosing subsets of an ensemble to support our visual-
izations, we explored both the OLS and WSE selection algo-
rithms. These produce subsets with different spatial
characteristics. OLS subsets are tightly distributed, with few
outliers. WSE subsets, on the other hand, are less tightly dis-
tributed and include some outliers. For the hurricane predic-
tion visualization problem, the tight distribution of OLS is
good at showing the most likely location of the storm, and is
useful for supporting interpolation-based summary displays.
The broader distribution ofWSE has the advantage ofmaking
the viewer aware of the high uncertainty in the prediction,
and is most useful for supporting ensemble-based displays.
For future work, we would like to explore a hybrid of the two
algorithms, choosing a subset that emphasizes layout central-
ity, while preserving heightened awareness of outliers.

While our subset selection method preserves spatial distri-
bution, there is no guarantee that it preserves the distribution
of ancillary information, such as storm strength and size. We
are examining approaches to preserving the distributions of
all information, while still supporting good spatial layout.
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