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Abstract

Uncertainty communicators often use visualizations to express the unknowns in data,
statistical analyses, and forecasts. Well-designed visualizations can clearly and effectively
convey uncertainty, which is vital for ensuring transparency, accuracy, and scientific
credibility. However, poorly designed uncertainty visualizations can lead to misunder-
standings of the underlying data and result in poor decision-making. In this chapter,
we present a discussion of errors in uncertainty visualization research and current
approaches to evaluation. Researchers consistently find that uncertainty visualizations
requiring mental operations, rather than judgments guided by the visual system, lead
to more errors. To summarize this work, we propose that increased working memory

Psychology of Learning and Motivation Copyright # 2021 Elsevier Inc.
ISSN 0079-7421 All rights reserved.
https://doi.org/10.1016/bs.plm.2021.03.001

1

ARTICLE IN PRESS

https://doi.org/10.1016/bs.plm.2021.03.001


demand may account for many observed uncertainty visualization errors. In particular,
the most common uncertainty visualization in scientific communication (e.g., variants of
confidence intervals) produces systematic errors that may be attributable to the appli-
cation of working memory or lack thereof. To create a more effective uncertainty
visualization, we recommend that data communicators seek a sweet spot in the work-
ing memory required by various tasks and visualization users. Further, we also recom-
mend that more work be done to evaluate the workingmemory demand of uncertainty
visualizations and visualizations more broadly.

1. Introduction

From simple analyses, such as those used in introductory statistics text-

books, to the complex forecasts of pandemic projection models, uncertainty

presents a difficult challenge for those seeking to represent and interpret it.

Uncertainties that can arise throughout a modeling and analysis pipeline

(Pang, Wittenbrink, & Lodha, 1997) are of interest to many fields. To con-

strain the complex category of uncertainty to its component parts, scholars

commonly distinguish between several types of uncertainty: ontological

(uncertainty created by the accuracy of the subjectively described reality

depicted in themodel), epistemic (limited knowledge producing uncertainty),

and aleatoric (inherent irreducible randomness of a process; Spiegelhalter,

2017). Additionally, quantified forms of aleatoric and epistemic uncertainty

are referred to as risk in decision-making domains (Knight, 2012). In this chap-

ter, we define uncertainty to encompass quantifiable and visualizable uncer-

tainty, such as a probability distribution.

Many people have difficulty reasoning with even simple forms of uncer-

tainty (Gal, 2002). One study found that 16–20% of 463 college-educated

participants could not correctly answer the question, “Which represents the

larger risk: 1%, 5%, or 10%?” (Lipkus, Samsa, & Rimer, 2001). Other work

finds that even experts with training in statistics commonly misunderstand

how to interpret statistical significance from frequentist 95% confidence inter-

vals (Belia, Fidler, Williams, & Cumming, 2005). These findings—that even

simple forms of uncertainty are challenging for college graduates and statisti-

cians to understand—should concern both the scientific community and soci-

ety. We should be concerned because we all make both small- and large-scale

decisions with uncertainty throughout our lives, such as picking stocks to

invest in or evaluating our pandemic risk.

In the context of textual expressions of uncertainty, researchers propose

that people have difficulty understanding probabilities when expressed as a
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percent (e.g., 10% chance of rain), because this framing is not how we expe-

rience probabilities in our daily lives (Gigerenzer & Hoffrage, 1995). A sub-

stantial body of research demonstrates that if we express uncertainty in

the form of frequency (e.g., it will rain 1 of 10 times), the representation

becomes more intuitive (e.g., Gigerenzer, 1996, 2008; Gigerenzer &

Gaissmaier, 2011; Gigerenzer & Hoffrage, 1995; Gigerenzer, Todd, &

ABC Research Group, 2000; Hoffrage & Gigerenzer, 1998). This line of

inquiry takes the perspective that humans can effectively reason with uncer-

tainty if, and only if, the information is presented in an intuitive way.

In addition to research on textural expressions of uncertainty, a large body of

evidence demonstrates that communicating uncertainty visually can help peo-

ple make more effective judgments about risk (for reviews see, Kinkeldey,

MacEachren, Riveiro, & Schiewe, 2017; Kinkeldey, MacEachren, &

Schiewe, 2014; Maceachren et al., 2005; Padilla, Kay, & Hullman, 2021).

Researchers propose that visualizations leverage the substantial processing

power of the visual system (Zacks & Franconeri, 2020), recruiting roughly half

of the brain (Van Essen, Anderson, & Felleman, 1992). Visualizations allow a

viewer’s visual system to complete some complex processing efficiently, such as

pattern recognition and data comparisons (Szafir, Haroz, Gleicher, &

Franconeri, 2016), which would be more challenging to do mathematically.

The power and efficiency of the visual system creates an advantage for visual-

izations over textual expressions of uncertainty. For example, consider how

long it takes to read about the following two treatments and how challenging

it is to decide which is riskier.

Treatment A: 3 of 10 patients have side effects.

Treatment B: 6 of 45 patients have side effects.

Now consider the same comparison of treatments but visualized using

the icon array in Fig. 1.

Treatment A Treatment B

Fig. 1 Icon arrays showing the proportion of patients with side effects in red after
receiving hypothetical treatments A or B.
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The red icons in Treatment A represent a larger portion of side effects

than the red icons in Treatment B. Icon arrays afford visual comparisons

that are relatively quick and easy for the visual system to compute, using

Gestalt grouping principles, which we will discuss in the Early-Stage

Processing Errors section. The visual comparison process above does not nec-

essarily require anymathematical calculation. A viewer can arrive at the correct

answer, that treatment A is riskier than B, by visually comparing the propor-

tion of side effects for each treatment and determining that A is larger. The

viewer does not need to calculate the exact proportions to accomplish this

task. Researchers have extensively studied icon arrays in the context of health

care communication; they find that icon arrays consistently help people

understand probabilities of risk and can be easier to understand than textual

representations of probabilities (for reviews, see Fagerlin, Zikmund-Fisher,

& Ubel, 2011; Garcia-Retamero & Cokely, 2017; Waters, Fagerlin, &

Zikmund-Fisher, 2016).

Many researchers have demonstrated that visualizations of uncertainty can

lead to better judgments than textual descriptions of the same information

(Fagerlin, Wang, & Ubel, 2005; Feldman-Stewart, Brundage, & Zotov,

2007; Fernandes, Walls, Munson, Hullman, & Kay, 2018; Garcia-Retamero

& Galesic, 2009a, 2009b; Garcia-Retamero, Galesic, & Gigerenzer, 2010;

Garcia-Retamero, Okan, & Cokely, 2012; Hawley et al., 2008; Tait,

Voepel-Lewis, Zikmund-Fisher, & Fagerlin, 2010; Waters et al., 2016;

Waters, Weinstein, Colditz, & Emmons, 2006). For example, one study

presented a mixed group of older adults and students with probabilities

via text (e.g., “aspirin can reduce the risk of having a stroke or heart attack

by 13%”). A second group was shown textual and icon arrays of this infor-

mation (Galesic, Garcia-Retamero, & Gigerenzer, 2009). Participants were

asked to estimate the number of people out of 1000 who had a stroke if

they did and did not take aspirin. Participants who were provided with

the icon arrays in addition to the textual information made significantly

more accurate judgments. Researchers have also documented improve-

ments compared to text for more complex visualizations (e.g., Fernandes

et al., 2018) (for a review of effective uncertainty visualization technique,

see Padilla et al., 2021).

In addition to mounting evidence illustrating the utility of uncertainty

visualizations, a number of studies have also documented reasoning errors

(e.g., Belia et al., 2005; Correll & Gleicher, 2014; Joslyn & LeClerc,

2013; Padilla, Creem-Regehr, & Thompson, 2020; Padilla, Ruginski, &

Creem-Regehr, 2017; Ruginski et al., 2016). Errors due to interpreting
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uncertainty visualizations can exacerbate the difficulty people have in rea-

soning with uncertainty.

An uncertainty visualization can unintentionally mislead its viewers,

which results in poorer decision-making (e.g., Broad, Leiserowitz,

Weinkle, & Steketee, 2007). For example, the Cone of Uncertainty—

produced by the National Hurricane Center—has become one of the most

notorious uncertainty visualizations (see, Fig. 2). The Cone of Uncertainty is

intended to show the forecasted path of a storm with the centerline rep-

resenting the mean prediction and the edge of the cone denoting a 66.6%

confidence interval around the mean. When people are not provided with

additional information about what the cone is intended to represent, they

believe that the cone shows the size of the hurricane growing over time

(Padilla et al., 2017). Instead, the cone is intended to show that the uncer-

tainty in the storm’s path increases with time from the initial forecast. The

concept of uncertainty increasing over time can be intuitive. For example,

Fig. 2 Example hurricane track forecast cone produced by National Hurricane Center
(https://www.nhc.noaa.gov/aboutcone.shtml).
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it is easier to predict the temperature for tomorrow than the temperature for

2 weeks from now. However, when uncertainty in the storm’s path is rep-

resented visually with a cone-like visualization, it requires effort to under-

stand it as anything other than the size of the storm.

Within traditional uncertainty visualization research, practitioners

commonly recommend a set of best practices or general principles without

positing cognitive theories as to why a visualization might produce errors.

However, uncertainty visualization researchers are increasingly interested

in cognitive perspectives (Fernandes et al., 2018; Hullman, Kay, Kim, &

Shrestha, 2017; Kale, Kay, & Hullman, 2020; Kale, Nguyen, Kay, &

Hullman, 2018; Kim, Walls, Krafft, & Hullman, 2019). Notably, Kim

et al. (2019) propose a Bayesian cognitive modeling approach to incorporate

prior beliefs and update evaluations of uncertainty visualizations. Also, Joslyn

and Savelli (2020) detail the cognitive mechanisms associated with a specific

type of reasoning error in uncertainty visualization. Although prior approaches

have detailed the cognitive aspects of reasoningwith uncertainty visualizations,

they do not offer a unified theory that describes the sources of errors across

visualization types. As a result, accurately predicting when a new type of

uncertainty visualization will fall into the category of helpful or harmful is

difficult.

The current chapter seeks to bridge this gap in knowledge by providing

a unifying theory for why errors occur when making decisions with uncer-

tainty visualizations.We begin this work by describing a cognitive framework

for how decisions are made with visualizations (Padilla, Creem-Regehr,

Hegarty, & Stefanucci, 2018), which we subsequently use as a tool to ground

empirical work on errors in uncertainty visualization. Then, we review

behavioral evidence of using uncertainty visualizations with a focus on when

errors or misunderstandings occur, in order to find commonalities among

these errors.

As a preview, researchers consistently observe errors when a visualization

or task requires a viewer to perform a complex mental computation to accu-

rately interpret the visual information. We propose that a unifying cognitive

process that predicts these errors is increased working memory or cognitive

effort. This chapter reviews research on working memory demand in the

context of visualizations and how working memory as a mental process

can potentially explain many of the errors observed in uncertainty-

visualization use.
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2. Visualization decision-making framework

Reasoning errors with uncertainty visualizations have the potential to

arise at various stages in the decision-making process. If we have a clear

understanding of where an error occurs in this process, we can more clearly

develop interventions to help make more effective decisions with uncer-

tainty visualizations.

For this chapter, we will utilize a cognitive model that describes decision-

making with visualizations proposed by Padilla et al. (2018) (see Fig. 3). The

Padilla et al. (2018)model integrates a dual-process theory of decision-making

and a modern understanding of visualization comprehension and learning.

2.1 Visual array and attention
The Padilla et al. (2018) model begins with a visual array, which is the

unprocessed neuronal firing in response to a stimulus. Bottom-up and

top-down attention guide a viewer’s gaze around the image. Bottom-up atten-

tion refers to how the visual system is guided to elements in the visualization

based on visual salience. Errors that occur from bottom-up attention result

from the visualization directing a viewer’s attention to task-irrelevant infor-

mation. Top-down attention is how the viewer controls his or her gaze

around a visualization. Top-down attention is based on the viewer’s goals,

experiences, and other individual differences. For example, Kim et al. (2019)

capture the influence of top-down attention on decision-making with

influences 

Working
Memory

processes

Visual  Array
Visual 

Description 
Instantiated 

Graph Schema

bottom-up
attention message 

assembly 

inference

Conceptual 
Message

Conceptual 
Question

Behaviordecision
making

MATCH

top-down
attention

Fig. 3 Visualization decision-making model proposed by Padilla et al. (2018).
Reproduced per CC-BY license from Padilla, L., Creem-Regehr, S., Hegarty, M., &
Stefanucci, J. (2018). Decision making with visualizations: A cognitive framework across dis-
ciplines. Cognitive Research: Principles and Implications, 3, 29.
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Bayesian priors representing previous beliefs and experiences. Errors that

arise due to top-down attention may come from users having an incomplete

understanding of how to achieve their goals, having experiences that tell

them to search through an image ineffectively, or other potential biases

based on long-term knowledge.

2.2 Working memory
Working memory (located in the circle at the top of Fig. 3) is a cognitive pro-

cess that can influence most visualization decision-making processes (Padilla

et al., 2018). The debate about how to define the term working memory is

ongoing, as it has differing characteristics in various fields (Cowan, 2017).

For this review, we will use the definition of working memory defined

by Cowan (2017), where working memory is a multi-component system.

Working memory maintains a finite amount of information for a short time

before that information is potentially stored in long-term memory. In the

context of uncertainty visualization, the term maintain means that when

viewers see a visualization, they store a mental representation of it in their

mind to update or manipulate later. For example, viewers might see a scatter

plot and want to find the data’s central tendency. In their mind, they would

mentally overlay a trend line onto their temporarily stored mental represen-

tation of the visualization. Within the traditional model of working mem-

ory, the visual-spatial sketch pad represents the mechanism that maintains

information from a visualization; a separate mechanismmaintains phonolog-

ical information (Baddeley, 1992).

Working memory has a central executive that controls its multicomponent

functions, and it works to control attention while suppressing automatic

processes (Logie & Marchetti, 1991). For example, the process of explicitly

directing top-down attention requires working memory (Shipstead,

Harrison, & Engle, 2015), as in directing one’s attention away from salient

information in a visualization. An error occurs when bottom-up attention

guides the visual system to visually salient but task-irrelevant elements in

the visualization. The central executive exerts its control over the finite

amount of working memory available to simultaneously suppress

bottom-up attention shifting to task-irrelevant information and guide atten-

tion toward task-relevant stimuli.

Three types of errors may occur due to working memory relevant to

uncertainty visualizations: capacity limitation errors, failure to utilize work-

ing memory, and temporal decay errors. Researchers have traditionally
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studied capacity limitation errors in the context of howmany digits or items in

sequence participants can remember (Miller, 1956). More recent work sug-

gests that we tend to group information (e.g., chunk) rather than maintain the

information separately and that we can remember between three to five

chunks of information (Doumont, 2002). Errors may occur when viewing

uncertainty visualizations if a visualization requires the viewer to maintain

too much information in working memory, essentially surpassing the limited

working memory capacity. As a simple example, imagine a visualization that

maps elements of the data to color, opacity, texture, size, shape, and position.

To interpret the visualization correctly, one must maintain in working mem-

ory how each variable relates to the data. Working memory capacity may be

overloaded if people are asked to do a complex data analysis with such a

working-memory demanding visualization. Capacity limitation errors include

failing to integrate all of the relevant information in a visualization; not being

able to perform a mental computation on a visualization; or failing to main-

tain, switch, or update task goals.

The second category of errors related to working memory encompasses

viewers failing to use working memory when they should. By default, we

tend to make fast and automated decisions that use as little working memory

as possible (Type 1 processing) (Kahneman, 2011; Tversky & Kahneman,

1974). Type 1 processing is an adaptive strategy that we have developed

to minimize effort because effort is metabolically costly. Researchers esti-

mate that our brains account for 20–25% of our resting metabolism

(Leonard &Robertson, 1994). Voluntary effort may not exclusively account

for the mind’s propensity toward Type 1 processing, but a combination of

energy conservation and reserving limited capacity working memory vali-

dates the preference for fast and automated decisions (Kool & Botvinick,

2014). However, some visualizations require the use of working memory

to be understood correctly (Type 2 processing). For example, when viewing

the line chart in Fig. 4 that illustrates the impact of the Stand Your Ground

law on gun deaths in Florida, a viewer might not notice that the Y-axis is

inverted. Without using working memory, the viewer would assume that

the Stand Your Ground law correlated with a drop in gun deaths in

Florida. To interpret this visualization correctly, a viewer needs to activate

working memory to recognize that the Y-axis is inverted and reimagine the

data’s appropriate relationships.

The third type of error related to working memory results from forgetting

relevant information because working memory decays over time. For exam-

ple, if asked to memorize the sequence 9,875,341,890, recalling the numbers
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after holding them in working memory for 5s is easier than after 5min. To

memorize such information and hold it in working memory for prolonged

periods, people generally chunk information, such as (987) 534–1890, and
thenmentally rehearse the information.Without rehearsal, our ability to store

information begins to decay after approximately 5–10s (Cowan, 2017). The
nature of the decay can vary due to the task, type of information, and indi-

vidual capacities (Cowan, Saults, & Nugent, 1997). Longer sequential visual-

ization tasks that require completion of longer-term goals may be error-prone

due to the degradation of working memory over time.

2.3 Visual description
The visual description (second box in Fig. 3) is the resultant mental conception of

the visualization’s information after top-down and bottom-up processing have

guided the extraction of information. Note that the visual description is not

identical to the visualization; its generation is dependent on what the viewer

focuses on and can be incomplete, biased, or skewed in its representation.

Fig. 4 Deceptive visualization showing the impact of the 2005 Stand Your Ground law
in Florida and the number of murders from firearms with the Y-axis reversed. This exam-
ple is based on a data visualization that was released to the public by Christine Chan at
Reuters (Pandey, Rall, Satterthwaite, Nov, & Bertini, 2015). Redrawn per CC-BY license from
Padilla, L., Creem-Regehr, S., Hegarty, M., & Stefanucci, J. (2018). Decision making with
visualizations: A cognitive framework across disciplines. Cognitive Research: Principles
and Implications, 3, 29.
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A visual description allows for enough understanding to mentally transform,

interpret, and make decisions with the representation. These processes require

the cognitive ability termed mental imagery, and again depend on working

memory (for a review, see Kosslyn, 1995).

2.4 Graph schemas
Graph schemas (third box in Fig. 3) are templates, rules, graphic conventions,

or strategies that people use to interpret a visualization. People might

develop graph schemas during formal education if they were taught how

to read different visualizations. For example, teachers commonly instruct

students on how to read maps by explaining the purpose and use of a legend,

scale, and compass rose. As another example, most educational institutions

introduce the number line to students at a young age, cementing amore is to the

right mapping (Winter & Matlock, 2013). These formal educational experi-

ences likely establish many graph schemas. People may also develop a graph

schema implicitly through practice viewing visualizations that utilize the same

conventions. Errors may occur with graph schemas if a viewer has not devel-

oped the necessary schema to interpret a visualization. A viewer may lack

graphic education or familiarity with a visualization, resulting in individual

differences in graph literacy (Okan, Garcia-Retamero, Galesic, & Cokely,

2012). Alternatively, the visualization might be wholly novel and require

the development of a new schema.

2.5 Matching process
The matching process between the visual description and the graph schema

occurs when a viewer selects a graph schema to expedite the process of inter-

preting a visualization. The mechanism of how viewers select a particular

schema remains unclear. Viewers may select a schema from the same broad

category as a visualization. For example, a viewer may select a schema for a

Cartesian coordinate plane when viewing a line graph. Viewers may also

select schemas based on matching salient features of the visualization and

the schema. When viewers see a bar chart, they may select a schema with

similar rectangular objects. Viewers may select the schema that is easiest

to recall, more recently stored, or one that has been primed. Errors may

occur when viewers select the wrong schema for a visualization. For exam-

ple, recent work shows that researchers could prime the type of schema par-

ticipants used by telling them an interesting story about the data (Xiong, Van

Weelden, & Franconeri, 2019). Different groups of people received
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different stories, and each story pointed out different features within the

same visualization. When asked what other people might see as essential

features in the data, participants were more likely to report that other people

would see the information they were primed to think of as relevant (Xiong

et al., 2019).

2.6 Instantiated graph schema
Instantiating the graph schema occurs when viewers update their mental rep-

resentation of the visualization to include information from the graph

schema. Errors can occur in this process if viewers select the wrong schema;

they can also occur if the viewers have to perform a complex mental transfor-

mation to update their mental representation with the information from the

schema. With a large mismatch between the schema and the viewer’s mental

representation of the visualization, a mental transformationmay be required to

combine the two (Vessey, 1991). For example, if the Y-axis is inversely

ordered (low numbers at the top), the viewer may need to mentally transform

the visualization to correctly order the Y-axis (according to their schema)

before incorporating the visual description and schema. Increased errors

and time to instantiate the graph schema will occur in cases in which a large

mismatch and exorbitant mental transformations are required. Theses out-

comes result from overloading the limited resources of working memory

available as time decays the information and exceeds the capacity to hold

chunks of information in memory (Doumont, 2002).

2.7 Message assembly
Themessage assembly process describes how viewers interpret their mental rep-

resentation of the visualization after it has been updated by the graph schema.

The resultant conceptualization of the meaning of the graphic is the concep-

tual message (fourth box in Fig. 3). Errors that may occur at this stage of the

process result from taking the wrong meaning from the visualization’s men-

tal representation.

2.8 Conceptual question
The conceptual question (box below working memory in Fig. 3) refers to the

question that the viewer asks of the visualization. A viewer may have specific

goals, such as attempting a data analytics task, which could produce various

direct conceptual questions, as in “Where are the outliers?” or “Which vari-

ables have meaningful relationships?.” Conceptual questions can also be
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more general (e.g., What can this visualization tell me about my health?)

or ill-defined (e.g., What am I looking at?). Many times, viewers may have

a sequence of conceptual questions about the visualization, which may

evolve.

In the Padilla, Creem-Regehr, Hegarty, & Stefanucci, 2018 framework,

conceptual questions play a key role as they channel working memory. This

framework suggests that the central executive (i.e., the resource allocation

mechanism in working memory) applies working memory to answer the

conceptual question during visualization reasoning. As a result, the concep-

tual question can:

1. Drive a viewer’s top-down attention to relevant information

2. Guide which graph schemas are selected

3. Frame the conceptual message

4. Influence decisions

The viewer’s specific question can influence all of the processes in this model

except bottom-up attention. These processes can also form feedback loops

or prime a specific graph schema (e.g., Xiong et al., 2019). Based on the con-

ceptual message, a viewer may decide to update the question or goal and

repeat some of the processes. Errors can occur as a result of the conceptual

question if it is unclear to the viewer how to achieve his or her particular

goals. The viewer might ask the wrong question to achieve their goals or

use incorrect steps. Viewers might also have too many goals, which can

be challenging to keep track of and require a significant amount of working

memory to manage.

2.9 Decision-making
Once all the relevant conceptual questions have been answered for the viewer

to feel comfortable making a decision, he or she completes the decision step.

Themajority of the widely documented decision-making biases and heuristics

occurs in the decision-making step. This process involves taking the visual

information stored in themind and using Type 1 or Type 2 processing to reach

a conclusion, usually in order to perform an action (Kahneman, 2011). Type 1

processing is relatively fast, unconscious, and intuitive. Type 2 processing

involves working memory and is slower, more metabolically intensive, and

more contemplative than Type 1 processing (Evans & Stanovich, 2013).

Other models of decision-making characterize these processes differently.

Here we note two processes in line with Evans and Stanovich (2013), one that

requires the activation of working memory to make a decision and another
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process that does not require significant working memory. There exists a mas-

sive body of literature detailing numerous possible decision-making biases that

can occur at this stage. Not all decision-making biases have been generalized

to the context of decisions with visualizations, but many of these biases may

influence reasoning with visualizations. However, more work is needed to

examine if all previously documented decision-making biases generalize to

the context of decision-making with visualizations.

2.10 Behavior
The final stage of the Padilla et al. (2018) model results in action or behavior.

Errors, although not decision-making errors, might occur in this model’s

final stage when people cannot take the action that they have selected.

For example, in hurricane forecasting, people might see a hurricane visual-

ization, decide to evacuate, and then lack the necessary resources to evacuate

or not know the appropriate evacuation route. These phenomena require

exploration in the more applied social sciences and are beyond the scope

of this chapter. However, failures to suppress heavily automated behaviors

(e.g., in the case of addictions) due to reduced cognitive resources or poor

executive control can also be observed during this stage.

3. Uncertainty visualization errors

Errors in understanding uncertainty visualizations can occur through-

out the decision-making process. Here we will use the Padilla et al. (2018)

cognitive model to organize and describe the widely documented errors as

early-, middle-, and late-stage visualization processing errors (as seen in

Fig. 5).

3.1 Early-stage processing errors
Early-stage visual processing errors are driven by the visual system and atten-

tional processes. Occurring early in the decision-making process, these types

of errors can be particularly hard to overcome as they influence all of the

downstream processes. Researchers refer to early-stage errors driven by ele-

ments in the visualization as visual-spatial biases (Padilla et al., 2018).

Researchers also speculate that visual-spatial biases are particularly hard to

overcome because they may be due to bottom-up attention and Gestalt

principles, both of which are difficult to cognitively control.
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Fig. 5 Early-, middle-, and late-stage uncertainty visualization errors that are organized using the Padilla et al. (2018) visualization
decision-making model.
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3.1.1 Boundaries5conceptual categories
One visual-spatial bias that occurs often in uncertainty visualization arises when

visualization creators delineate continuous data with isocontours, boundaries,

intervals, bins, or other types of segmentingmarks. Throughout our daily lives,

we have learned to interpret the delineations in the world, such as fences, road

lanes, and crosswalks, as indications of important information. Tversky (2011)

writes, “Framing a picture is a way of saying what is inside the picture has a

different status than outside of the picture” (p. 522). In our continuous world,

physical delineations separate and categorize meaningful differences and space

(Tversky, 2001). Delineations can also be metaphorical. We draw a proverbial

line in the sand to indicate a boundary that should not be crossed (Lakoff &

Johnson, 1980). As humans, we are adept at categorizing complex information,

and we commonly do this by physically or mentally constructing boundaries.

The problem for uncertainty visualization emerges when the designer

creates boundaries in probabilistic data, and the boundaries do not indicate

categorically different information (Padilla et al., 2015, 2017). For example,

95% confidence intervals delineate probabilistic information to indicate that

the true mean has a 95% chance of falling within the specified range.

However, there is no categorical difference between the data inside and out-

side of the confidence interval. Said another way, 95% confidence is not

unique, and scientists could have also chosen intervals at 96%, 94%, or

99%. Ninety-five percent confidence exists as a convention concerning

the probability of error scientists consider acceptable to make certain infer-

ences. Some fields have different conventions. The National Hurricane

Center uses a 66.66% confidence interval to communicate the uncertainty

in a hurricane forecast path.

When most viewers see an interval, they utilize the strategies they have

developed throughout their lives and interpret it as a meaningful boundary

that notes categorically different information (Tversky, Corter, Yu,

Mason, & Nickerson, 2012; Zacks & Tversky, 2013). This error could also

be considered a mismatch of the visual description and the instantiated graph

schema. In a geospatial context, researchers have called this a containment

strategy (McKenzie, Hegarty, Barrett, & Goodchild, 2016), where areas

within a boundary are imbued with semantic homogeneity (Fabrikant &

Skupin, 2005). For example, navigation applications show a user’s location,

but sometimes the location can have uncertainty (i.e., if the GPS signal is

interrupted). One study examined different visualizations for representing

the uncertainty in the viewer’s location by comparing a gradient map to a

95% CI (see Fig. 6). When viewing the 95% confidence interval that looked

16 Lace Padilla et al.

ARTICLE IN PRESS



like a bounded circle, participants were more likely to take a containment

strategy than when viewing the same positional uncertainty represented

in a gradient (McKenzie et al., 2016).

Work examining hurricane forecasts also finds that people use a contain-

ment strategy. In one study, researchers showed participants five visualiza-

tions of a hurricane’s forecasted path (Fig. 7). The path visualizations were

intended to show the forecasted direction of the storm and the uncertainty in

the forecasted route. As the time increases from the initial forecast, it becomes

increasingly more difficult to accurately predict the path of the storm, which is

shown in the visualizations’ spread increasing for B–E in Fig. 7. Researchers

compared a version of the cone of uncertainty, which shows themain forecast

path of the storm, along with a 66.6% confidence interval (C in Fig. 7), to a

version with just the center line (A), a cone with no center line (B), a gradient

mapping of the confidence interval (D), and a new visualization technique

entitled an ensemble visualization (E). The ensemble visualization shows a subset

of paths sampled from the hurricane’s probabilistic forecast (Liu et al., 2016;

Liu, Padilla, Creem-Regehr, & House, 2019). This research demonstrated

that the visualizations that were cone-like (B–D in Fig. 7) elicited a contain-

ment strategy where participants rated areas inside of the cones to have more

damage than areas outside of the cones. With the ensemble visualization, par-

ticipants reported that areas near the center of the distribution would receive

more damage and damage ratings decreased along with the distance to the

center of the distribution (Ruginski et al., 2016). The response patterns

observed for ensemble visualizations indicate that participants understand

the distribution of uncertainty that the ensembles represent. In the context

of hurricane forecasting, this experiment was the first to find an alternative

Fig. 6 Visualizations that show the uncertainty in two locations, using a gradient or a
bounded circle right, used in McKenzie et al. (2016). Reproduced per CC-BY license, from
Padilla, L., Creem-Regehr, S., Hegarty, M., & Stefanucci, J. (2018). Decision making with
visualizations: A cognitive framework across disciplines. Cognitive Research: Principles
and Implications, 3, 29.
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Fig. 7 Redrawn versions of hurricane forecast path of visualizations based on Ruginski et al. (2016).
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to the cone of uncertainty that did not elicit the containment strategy.

Researchers determined that the edge of the hard boundary elicits the highest

visual salience and likely drives the containment strategy (Padilla et al., 2017).

The misunderstandings associated with delineations occur in one-

dimensional data as well. Delineation errors can be understood as boundaries

creating conceptual categories (Padilla et al., 2021). The boundaries creating con-

ceptual categories error likely contributes to the numerous studies finding that

people misunderstand how to interpret error bars and confidence intervals.

Both well-trained experts in statistics and novices commonly misunderstand

how to interpret statistical significance from frequentist 95% confidence

intervals (e.g., Belia et al., 2005; Hofman, Goldstein, & Hullman, 2020).

Researchers find that even trained experts incorrectly assume that no signif-

icant difference exists between two groups with overlapping intervals (Belia

et al., 2005). When comparing two health treatments with visualized means

and frequentist 95% confidence intervals, participants were more willing to

overpay for treatment and to overestimate the effect size compared to when

the same data were shown with predictive intervals (Hofman et al., 2020).

People tend to believe that error bars contain the distribution of values,

resulting in the mismatch between the visual description and instantiated

graph schema. If the two bars are far apart, the boundaries lead people to

believe that these boundaries contain all the relevant values and therefore

they incorrectly assume a statistically significant difference. A similar effect

has also been found with bar charts. Researchers have demonstrated a

“within the bar bias,” where people believe that data points that fall within

a bar are more likely to be part of a distribution than data points equal dis-

tance from the mean but outside of the bar (Newman & Scholl, 2012).

This boundaries- create-conceptual-categories error likely occurs early in the

decision-making process. As demonstrated in Padilla et al. (2017), bound-

aries make up some of the most salient features in a visualization and can

attract our bottom-up attention. As a result, we might spend more time

looking at the boundaries in a visualization, which can produce an over-

weighting of the boundaries in our conceptualization of the data.

One of the reasons boundaries create conceptual categories is that they

may reinforce Gestalt grouping principles, which are the visual system’s pro-

pensity to group and categorize visual information based on similarities in

properties such as shape, color, physical proximity, and other contextual

information (Wertheimer, 1938). As an illustration, try to determine if pat-

terns are depicted in Fig. 8. All the figure items may seem to be a part of one

global grouping because they are all circular and loosely arranged in a circle.
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With effort, most viewers notice that some objects are larger or smaller and

others circular or ovular. Identifying patterns becomes easier when bound-

aries are added, as in Fig. 9, which bounds the ovular items with a line.

When the boundaries are included, visually grouping the ovular objects

and noticing they have an upward trend is much easier. The boundary works

to precategorize some of the information for the visual system. Said another

way, the boundaries offload cognition on the visualization by categorizing

the objects before the visual system does. The categorization created by the

boundaries occurs early in the decision-making process and reduces a visual

system processing step. However, a problem arises when a viewer needs to

group different information than what the boundary contains. When viewing

Fig. 9, try to mentally group the smaller objects. Most people can successfully

group the smaller objects and see their trend, but this process requires

Fig. 8 Ambiguous Gestalt grouping example.

Fig. 9 Ambiguous Gestalt grouping example with boarder around the ovular items.
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significant effort. Mentally grouping the small objects requires suppressing or

ignoring the grouping formed by the boundary, requiring additional working

memory.

The prominence of the boundaries on the patterns we can see in the data

illustrates a visual-spatial bias, where the boundary can lead viewers to see

different patterns within the same visualization or data. When visualization

designers use boundaries, they define the types of patterns that viewers can

see in their data. Their viewers will have difficulty seeing any other patterns

within the data. The immutable effect of the boundary can be problematic

when the boundaries are arbitrary (i.e., 95% CIs or 66% CIs in the Cone of

Uncertainty), making viewers believe that categorical differences exist in

the data when there are none, which hinders viewers from finding other

important patterns.

Although the point at which the boundary enters the decision-making

process occurs very early (e.g., the visual array), the impact of boundaries

might be observed at multiple points throughout the decision-making pro-

cess. Boundaries may be highly salient and direct viewers’ bottom-up atten-

tion to information inside the boundaries. Viewers might form a strategy to

assume that visualization designers are trying to communicate something

meaningful with the boundaries and direct their top-down attention to the

boundaries’ information. Boundaries may evoke incorrect schemas and lead

to misunderstandings about what the data represent. Boundaries could even

evoke some traditional decision-making biases such as anchoring, where peo-

ple are biased to make judgments in relationship to the boundaries.

Such early-stage processing errors are some of the most consistent and

widely documented, but little is known about why these errors occur.

One theory that we propose here is that working memory is a crucial con-

tributor to early-stage processing errors in uncertainty visualization.

Early-stage processing errors represent a unique category because working

memory cannot easily influence all these processes. In particular, bottom-up

attention is difficult to control with effort. As noted throughout this section,

many of the errors we reviewed might be fully explained by bottom-up

attentional processes. For example, some work finds that boundaries in hur-

ricane forecasts are highly salient and draw the viewers’ attention (Padilla

et al., 2017). All types of boundaries may draw viewers’ attention, and there-

fore, they have an overstated impact on viewers’ decision-making process

compared to more task-relevant information in the visualization. Further,

even when viewers consciously know not to focus on information, as with

the Cone of Uncertainty boundary, they likely have difficulty suppressing

21Uncertainty visualization errors

ARTICLE IN PRESS



saccadic movements toward such salient information. Thus, the boundary

may increase the working memory required due to active inhibition.

The most notable characteristic of early-stage processing errors is that

they are challenging to overcome. For example, in one study, participants

were provided with extensive instructions on interpreting the Cone of

Uncertainty (Boone, Gunalp, & Hegarty, 2018). Researchers instructed

participants that the cone does not show the storm’s size growing over time,

but participants still made decisions as if the storm’s size was increasing.

Notably, at the end of the experiment, participants could accurately answer

questions about interpreting the cone correctly (Boone et al., 2018). This

work provides some evidence that even when viewers are aware that they

should cognitively override the visual array’s impacts, they find it challeng-

ing to do so.

Participants’ inability to utilize working memory to make more effective

decisions in the previous examples may be because working memory has

difficulty impacting early processing errors. Working memory’s problem

in affecting early processing errors could be due to earlier errors biasing

all the downstream processes. It could also be the case that early processing

errors are primarily due to bottom-up attention and working memory may

have little ability to impact bottom-up attention. However, no work has

examined the exact nature of early-stage processing errors in visualization

reasoning. More work is needed to understand the cause, prevalence, and

unwavering nature of such errors.

3.2 Middle-stage processing errors
In the Padilla et al. (2018) framework, middle-stage processing errors occur

after the visual system has created a mental representation of the visualization.

At this stage, viewers apply a schema that they have stored in long-termmem-

ory to their mental representation of the visualization. For example, when

viewing Fig. 10 (left), most people would categorize the picture as a map.

Consciously or unconsciously, they would retrieve the schema for maps

and make assumptions about the information, including that North is at

the top and that a consistent relationship likely exists between the physical size

of the areas shown. They would have made assumptions based on map

schemas even though we excluded the map’s compass rose and legend. As

in this example, many of the assumptions we make about visualizations based

on schemas create an advantage over their absence. Schemas help us interpret

information correctly, efficiently, and quickly when a visualization adheres to

known graphic conventions.
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The Padilla et al. (2018) schema instantiation process has three steps, as

illustrated in Fig. 11. A viewer must first correctly classify the visualization

type. With standard visualizations (e.g., line or bar charts), accurate classifi-

cation occurs relatively easily. However, errors can arise when ambiguity

exists in classifying the category or type for a visualization.

A famous example of classification involves the LondonUndergroundmap

by Harry Beck (see an example based on Beck’s innovation in Fig. 10, right).

Beck helped define a new cartographic convention that departed from the his-

torical approach of superimposing subway lines on a geographically accurate

map (Guo, 2011). In Beck’s redesign, he opted to arrange the layout in a dia-

grammatic fashion that focused on improving the legibility of routes, transfers,

and stops, inspired by electrical circuits. Initially, transit officials scoffed at the

design, but it was ultimately adopted in 1933. Some of the apprehension about

Beck’s map began because officials thought that riders might see it as a standard

map, fail to realize that the distances between stops were not based on physical

distance, become confused, and miss their stops. Researchers continue to

discuss whether Beck’s design should be classified as a map or as a diagram

(Cartwright, 2012).

When new innovations change visualization design, viewers might

become confused about how to classify a new type of visualization, which

can affect how they determine and implement an appropriate schema.

Today, Beck’s approach has been utilized worldwide for close to a century,

and most transit riders have developed a specific schema for diagrammatic

subwaymaps. Beck’s success is likely due in part to the design being different

enough from standard approaches that the design prompted riders to recog-

nize that a standard map-based schema would not work. Additionally, the

design reduced directional information to three axes, reducing the memory

required to match viewers’ destination goals with their visual description.

In the next step of the graph instantiation process, viewers retrieve the

relevant schema based on how they classified the visualization. Errors can

occur in this process when viewers have not learned an appropriate schema.

When no schema is available for a graph type, the viewers might utilize a

schema from a different visualization type or context. For example, see

the new coordinate system in Fig. 12 and try to determine the values for B.

Visual description 
classification 

Schema retrieval
(from long-term 
knowledge) 

Schema application 

Fig. 11 Three-step schema instantiation process.
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One strategy is to notice that A and B both have two values and a coor-

dinate plane. Dot plots use similar Cartesian coordinate planes but have dif-

ferent axes than in the example. One could apply the Cartesian coordinate

schema to interpret the new hypothetical coordinate plane and then derive

B’s values, as illustrated in Fig. 13.

The problemwith applying the schema for a Cartesian coordinate plane to

the new coordinate plane is that the planes do not adhere to the same graphic

conventions. The angles of the axes in Fig. 14 are not 90°. Applying a schema

for a Cartesian coordinate to the new coordinate plane incorrectly is easy,

as they share similar properties. When the appropriate schema is unknown,

viewers commonly retrieve a different visualization schema to interpret the

new information, which can work out well in some cases or can lead them

to systematic misinterpretations. Graph schemas that viewers can easily

remember and those frequently used are more likely to be applied to an

ambiguous visualization type.

In the final stage of the schema instantiation process, viewers must apply

the schema that they have retrieved to the visualization in order to answer

Fig. 13 Example of a mental rotation needed to apply at the schema for Cartesian coor-
dinate plane to a hypothetical new coordinate plain and derived B.

A

B

(2,3)

(?,?)

Fig. 12 Hypothetical new coordinate plane.
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the conceptual question. When a mismatch between the schema and the

visualization occurs, as illustrated in the prior example, a transformation is

required to make the two align. Cognitive Fit Theory describes how errors

occur when a mismatch between the schema and the visualization requires

exorbitant mental computations (Vessey, 1991). A large mismatch between

the schema and visualization requires significant working memory to make

the two align, which results in increased errors and time to complete the task

(Padilla et al., 2018). Note that the Padilla et al. (2018) model suggests that

the schema matching process and all other processes (other than bottom-up

attention) are in service of the conceptual question. Even if viewers do not

think they are trying to answer a specific question, they always have a goal,

which could be as simple as understanding what they see.

3.2.1 Schema errors in hurricane visualizations
Uncertainty visualizations of hurricane forecasts represent one of the most

highly studied types of schema errors (Padilla et al., 2017; Padilla, Creem-

Regehr, et al., 2020; Ruginski et al., 2016). As previously discussed, viewers

assume that the National Hurricane Center’s Cone of Uncertainty represents

the storm’s size growing over time, even though it does not communicate

storm size information (Padilla et al., 2017). Researchers have also observed

the misunderstanding that the cone’s area represents the size of the storm

when blurry or fuzzy boundaries border the cone.

One key source of these errors involves the schema that people utilize

when seeing hurricane forecast maps. Viewers looking at a hurricane forecast

map reasonably use the schema that they have learned for maps, which dic-

tates that physical distance on a map should correspond to physical distance

A

B

(2,3)

(-2,3)

Fig. 14 Illustration of how the axes for the new coordinate plane are not 90° angles.
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in the world. However, cone-like hurricane forecasts violate cartographic

expectations by using physical distance to represent uncertainty in the

storm’s path. To interpret the forecast correctly, viewers must maintain

the base-map schema but then suppress the map schema when looking at

the cone. Viewers must keep schemas for both maps and uncertainty in

working memory and apply each where appropriate in the visualization.

Flexibly switching between schemas is highly demanding on working mem-

ory. Such a high working memory demand required by cone-like hurricane

forecasts may overtax viewers’ limited working memory capacity.

When the workingmemory demand of a visualization exceeds a viewer’s

working memory capacity, the viewer may drop one schema (e.g., use only

the map schema). Viewers who utilize only a map schema commonly report

that the cone-like visualizations represent a danger zone, where areas inside

the cone are at risk and areas outside the cone are relatively safe (Ruginski

et al., 2016). When forced to drop a schema, we argue that people will likely

maintain the schema with which they have the strongest associations. As

most people have seen and used maps for large portions of their lives, the

map schema will take prominence over the uncertainty schema, which they

may have less training or experience using.

We were initially surprised to find that viewers of a blurry cone also see a

similar danger zone, as researchers have suggested that blur/fuzziness/trans-

parency may be a more intuitive way to communicate uncertainty

(MacEachren et al., 2012). Researchers continue to test blurry cones as an

alternative approach to the Cone of Uncertainty and see no benefits of blur

(Millet et al., 2020). The interest in testing alternative metaphorical expres-

sions of uncertainty (e.g., blur, fuzziness, transparency, fogginess, and sketch-

iness), including our own, occurred mainly due to a misattribution of why

the Cone of Uncertainty leads to misunderstandings. We argue that the prin-

cipal error inherent in cone-like visualizations is that they force viewers to

hold multiple schemas in working memory, which is the case for cones with

both rigid and blurry boundaries. Blur, fuzziness, transparency, fogginess, and

sketchiness express uncertainty explicitly as an additional attribute of the visu-

alization that requires a second schema. More modern uncertainty visualiza-

tion techniques implicitly communicate the uncertainty in animations

(Hullman, Resnick, & Adar, 2015) or color (Correll, Moritz, & Heer,

2018) and may prove to be more effective because they do not require the

viewer to hold multiple schemas in their mind.

Blur or distributional visualizations can be highly successful if a second

schema is not required to understand the visualization. For example,
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researchers have found that gradient plots of 1D data can outperform interval

plots of the same information (Correll & Gleicher, 2014). Gradient plots of

1D data require only a single schema for mapping opacity to probability.

Researchers have also documented how ensemble visualizations, which

are the most effective hurricane forecast visualization technique (Ruginski

et al., 2016), can also suffer from schema errors (Padilla et al., 2017;

Padilla, Creem-Regehr, et al., 2020). The approach of this work was to

identify the schema participants use when viewing ensemble visualizations.

Ensemble visualizations have been developed as a technique relatively

recently (Liu et al., 2016), and we can reasonably assume that people have

not developed a specific schema for ensembles.

After reviewing all commonly available visualization techniques,

researchers noted that the ensemble visualization shared many similar prop-

erties to map-based navigation applications (Padilla et al., 2017). Both

map-based travel applications and ensemble hurricane forecasts have a base

map that adheres to standard cartographic principles and overlays of lines.

Researchers speculated that when viewing an ensemble visualization, people

utilize the schema that they have developed for understanding travel appli-

cations (Padilla et al., 2017). An essential benefit to using a travel application

schema is that participants would not have to hold multiple schemas in their

minds (e.g., one for maps and one for uncertainty). The use of a single

schema could be one reason why ensemble visualizations outperform

cone-like hurricane forecasts (Padilla et al., 2017; Ruginski et al., 2016).

However, the problem with using a travel application schema for hur-

ricane ensembles is that the schema could lead to errors in specific cases.

Researchers tested an additional hypothesis that people see each line of

the hurricane forecast ensemble as a specific path the hurricane could take

(Padilla et al., 2017). The schema for geospatial travel visualizations dictates

that the application shows a finite list of possible discrete routes and not a

distribution of routes. Whereas for the ensemble visualization, each line

depicts a subset of a distribution. In other words, the ensemble lines show

the spread of uncertainty in the path of the storm. They do not show an

exhaustive list of every possible path the storm could take. If people use a

schema for geospatial travel applications and one of the ensemble members

intersects a location of interest, they may incorrectly think the likelihood is

higher that the storm will hit that location (Padilla et al., 2017).a

a Note that researchers provided participants little information about how to interpret the ensembles,

which simulates the conditions in which they would see hurricane forecast in the news (i.e., on average,

hurricane forecasts are shown on TV for 1.52 min; Padilla, Creem-Regehr, et al., 2020; Padilla,

Powell, Kay, & Hullman, 2020).
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Researchers tested the hypothesis that viewers use a geospatial travel

application schema to interpret ensemble displays by showing participants

ensemble hurricane forecasts with two indicated locations (See Fig. 15)

(Padilla et al., 2017). On each trial, an ensemble member intersected one

of the locations. Researchers found that when the ensemble member inter-

sected a location, the participants believed that the location would receive

more damage than the location that was not intersected by an ensemble

member. This overreaction due to the colocation with the ensemble mem-

ber persisted regardless of the damage probability (Padilla et al., 2017).

Follow-up research provided converging evidence that ensemble visu-

alizations evoke a geospatial travel application schema by replicating the

overreaction when an ensemble member intersects a point of interest and

demonstrating that the number of lines shown moderates this effect

(Padilla, Creem-Regehr, et al., 2020). Researchers reduced the overreaction

bias by increasing the number of lines shown. As an illustration, when shown

an ensemble visualization with 5 or 10 paths and one path intersects a loca-

tion, people commonly report a 20% chance the storm will hit the location

with 5 paths and 10% with 10 paths. Researchers found that increasing the

lines from 9 to 14 to 33 meaningfully reduced the overreaction bias (Padilla,

Creem-Regehr, et al., 2020).

However, researchers were never able to entirely eliminate the

overreaction by changing the number of lines (Padilla, Creem-Regehr,

et al., 2020). In a final attempt to reduce the overreaction bias, researchers

Fig. 15 Example ensemble hurricane forecast visualizations with two locations from
Padilla et al. (2017). In each visualization, one location is intercepted by an
ensemble member. Reproduced per CC-BY license, from Padilla, L., Creem-Regehr, S.,
Hegarty, M., & Stefanucci, J. (2018). Decision making with visualizations: A cognitive frame-
work across disciplines. Cognitive Research: Principles and Implications, 3, 29.
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tested if participants could override the graph schema using working mem-

ory to control their overreaction cognitively. Researchers provided partic-

ipants with extensive instructions on interpreting an ensemble visualization

and how to perform the task correctly. Participants with extensive instruc-

tions were able to reduce their bias but not entirely remove it. At the end of

the study, participants who received extensive instructions could report the

correct strategy, but these participants still overreacted in their behavioral

judgments, albeit to a lesser degree (Padilla, Creem-Regehr, et al., 2020).

In summary, ongoing research on hurricane forecast visualizations dem-

onstrates multiple schema-related errors. Errors are highly likely when

working memory demand from a visualization is increased, by maintaining

two schemas or attempting to cognitively override one schema. The major-

ity of geospatial uncertainty visualizations will likely encounter similar errors

because superimposing the uncertainty visualization on the base map will

likely evoke the viewer’s map schema.

Future visualization designers interested in communicating geospatial

uncertainty that does not evoke a traditional cartographic schema could uti-

lize the approach pioneered by Harry Beck in the London Underground

map. One possible reason that the London Underground map does not pro-

duce large schema-based errors is that its differences sufficiently separate the

visualization from a traditional map, which makes people aware that a con-

ventional map schema is not appropriate. If the visualization alerts the viewer

to its novelty, it could trigger the viewer to develop a new schema.

3.2.2 Deterministic construal errors
Many schema-based errors may also be explained by viewers ignoring the

uncertainty and instead interpreting uncertainty visualizations as communicat-

ing deterministic data, called deterministic construal errors ( Joslyn & Savelli,

2020). Researchers first identified deterministic construal errors in 1D tem-

perature forecasts, when they presented participants with uncertainty in mean

temperature forecasts with confidence intervals visualized as bars (Savelli &

Joslyn, 2013). The researchers found that 36% of participants believed that

the confidence intervals represented high- and low-temperature forecasts

rather than uncertainty around the mean (Savelli & Joslyn, 2013). Savelli

and Joslyn then tested alternative visualization techniques, including dotted

lines and blurry boundaries, and found that the participants still assumed that

the intervals around the means were high- and low-temperature forecasts.

The researchers went further by creating an obvious key that instructed
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viewers on how to interpret the confidence intervals accurately, which did not

reduce the deterministic construal error (Savelli & Joslyn, 2013). Other

researchers have demonstrated similar effects with color encoding, where

viewers interpret the probability of rain fall as cumulative rainfall (Wilson,

Heinselman, Skinner, Choate, & Klockow-McClain, 2019).

In a recent review of deterministic construal errors, Joslyn and Savelli

(2020) propose that the psychological cause closely relates to attribute sub-

stitution. Attribute substitution is where people opt to use an easy and often

incorrect mental process rather than doing a challenging mental computa-

tion (Kahneman & Frederick, 2002). Indeed, the schema associated with

most uncertainty visualizations places high demand on working memory,

and viewers may opt for a more easily interpreted schema, essentially reduc-

ing their working memory demand. In the context of textual information,

scholars in a wide range of fields have documented an aversion to working

memory demand associated with uncertainty, termed ambiguity aversion

(e.g., Bach, Hulme, Penny, & Dolan, 2011; Curley, Yates, & Abrams,

1986; Einhorn & Hogarth, 1985; Ellsberg, 1961; Highhouse, 1994;

Huettel, Stowe, Gordon, Warner, & Platt, 2006).

We propose that a schema hierarchy may be an additional contributor to

deterministic construal errors, presenting a unique challenge to uncertainty

visualizations where viewers unconsciously use only the dominant schema.

The effectiveness of emerging visualization techniques supports this assertion,

such as hypothetical outcome plots (Hullman et al., 2015) that force users to

utilize a schema that includes uncertainty. Hypothetical outcome plots consist

of animated visualizations that sample from a distribution. Each frame of the

animation shows one sample from a probabilistic distribution. Hypothetical

outcome plots force viewers to utilize a schema that incorporates uncertainty

and have been found to outperform other modern visualization techniques

(Hullman et al., 2015; Kale et al., 2018).

3.3 Late-stage errors
After viewers have gathered relevant information from a visualization, used

graph schemas to interpret the visualization, and attempted to answer their

conceptual question, the final stage of the process consists of making a deci-

sion with all of that information and acting. Late-stage processing errors in

visualization decision making can occur when viewers apply universal

decision-making heuristics. Universal decision-making heuristics are not
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specific to reasoning with visual information and are studied significantly

by researchers in psychology and economics (e.g., Gigerenzer, 2008;

Kahneman & Tversky, 1982; Montibeller & VonWinterfeldt, 2015). In this

section we will review studies that have generalized decision-making biases

to reasoning with uncertainty visualizations.

3.3.1 Framing errors: Probabilistic vs frequency
In the context of uncertainty communication, researchers find that textual

information that uses a frequency framing (1 out of 10) is more intuitive than

probabilistic framing (10%) (Gigerenzer & Hoffrage, 1995) and requires

less working memory (Yin et al., 2020). The general theory suggests that

people have difficulty reasoning with probabilities because they rarely expe-

rience risk in the form of probabilistic expressions (Gigerenzer, 1996, 2008;

Gigerenzer & Gaissmaier, 2011; Gigerenzer et al., 2000). Emerging work in

uncertainty visualization demonstrates that visualization techniques that uti-

lize frequency framing can be highly successful, including icon arrays

(Galesic et al., 2009), quantile dot plots (Fernandes et al., 2018), hypothetical

outcome plots (Hullman et al., 2015), and ensemble plots (Liu et al.,

2016, 2019).

Visualizations that utilize frequency framing allow the viewers’ visual sys-

tem to interpret probabilities rather than requiring them to consider numeric

expressions. When communicated in text, researchers found that individuals

with low working memory capacity can more easily interpret statements

expressed as frequencies rather than probabilities (Yin et al., 2020). It is pos-

sible that visualizations that display frequency information rather than prob-

ability information will also require less working memory.

For example, the bottom of Fig. 16 shows a quantile dot plot of night-

time low temperatures, and the top shows the cumulative distribution func-

tion used to generate the dot plot. In this example, each dot represents a 5%

probability. If the researcher asks a viewer to determine the probability that

the nighttime temperature will be 32° or below using Fig. 16, the viewer

could simply count the number of dots. In this example, each dot represents

a 5% probability. If the same information is visualized with a density plot

(e.g., a bell curve), the viewer would have to mentally compute the integral

under the curve, which is a highly challenging judgment, resulting in

viewers likely substituting this process for an easier one. Scholars suggest that

frequency-framing uncertainty visualizations afford a simple and effective

heuristic that requires minimal working memory compared to probabilistic

techniques (Padilla et al., 2021). However, no work as directly tested the

working memory demand of uncertainty visualizations.
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A slight conflict in the field of uncertainty visualization exists between

visualizations that provide more expressive information about the distribution

of data (e.g., distributional visualizations) and visualizations that are more sim-

ple (e.g., visualizations that show summary statistics). Distributional visualiza-

tions can represent essential features about the distribution, including the

shape, skewing, or outliers (Padilla et al., 2021). A rule of thumb in visuali-

zation design is that more expressive visualizations are preferred because they

give a more fine-grained and thorough representation of the data (Mackinlay,

1986; Munzner, 2014). However, more expressive visualizations depict more

information, which might have the unintended consequence of increasing

working memory demand. For example, distributional visualizations such

as quantile dot plots convey more attributes of the data than simpler visuali-

zations such as error bars or means. Interestingly, frequency framing distribu-

tional visualizations seem to hit the sweet spot by conveying the distributional

data simplistically. Mounting evidence suggests that quantile dot plots

improve accuracy and memory compared to density plots (Hullman et al.,

2017; Kay, Kola, Hullman, &Munson, 2016) and outperform summary plots,

density plots, and text descriptions of uncertainty for decisions with risk

(Fernandes et al., 2018).

Fig. 16 The bottom illustrates a quantile dot plot that shows a forecasted nighttime
low temperature, and the top shows the cumulative distribution function that was used
to create the quantile dot plot. Redrawn from, Padilla, L. M., Powell, M., Kay, M., &
Hullman, J. (2020). Uncertain about uncertainty: How qualitative expressions of forecaster
confidence impact decision-making with uncertainty visualizations. Frontiers in
Psychology, 11, 3747.
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Icon arrays, which are nondistributional frequency-framing visualiza-

tions, have also consistently shown decision-making advantages over text

communications of health risk (for review, see Fagerlin et al., 2011;

Waters et al., 2016). Icon arrays can also reduce common decision-making

biases, such as individuals focusing on the numerator and neglecting the

denominator (for a review, see Garcia-Retamero et al., 2012), anecdote bias

(e.g., prioritizing anecdote information over data; for a review, see Fagerlin

et al., 2005) and side effect aversion (Waters, Weinstein, Colditz, & Emmons,

2007). Side effect aversion is a common bias where patients over-weight

negative effects of treatment when making health decisions (Waters et al.,

2007). Using a large sample (n¼4248), researchers found that including icon

arrays describing the likelihood of developing cancer with and without a

hypothetical preventative drug decreased side effect aversion (Waters

et al., 2007). Scholars propose that side effect aversion is closely related to

risk aversion (Kahneman, Knetsch, & Thaler, 1990) and may have similar

cognitive mechanisms (Waters et al., 2007). Icon arrays’ use of frequency

framing also helps people with low numeracy to interpret probabilities cor-

rectly (e.g., Galesic et al., 2009; Garcia-Retamero & Galesic, 2009a, 2009b;

Hawley et al., 2008). While not directly tested, icon arrays may guide the

viewer’s attention to task-relevant information, which may naturally coun-

teract the classical decision-making biases that tend to occur later in the

decision process.

In summary, the majority of work in uncertainty visualization that

examines universal decision-making biases finds that frequency-framing

visualizations consistently outperform probabilistic depictions of the same

data. Some studies also find that frequency-framing visualizations can reduce

common decision-making biases. One explanation for the superiority of

frequency-framing visualizations is that they evoke an effective heuristic for

interpreting uncertainty, using less working memory (Kahneman &

Frederick, 2002). However, more work is needed to directly test working

memory in the context of decision-making biases with uncertainty

visualizations.

4. Conclusions

In this chapter, we reviewed research on biases in uncertainty visual-

ization. Using the Padilla et al. (2018) framework, we discussed biases at

early-, middle-, and late-stage decision-making processes. We proposed a

unifying theory that increased working memory demand or lack thereof
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contributes to many of the biases reviewed in this paper. If visualization

designers can understand the source of the biases, they may be less likely

to repeat visualization mistakes. Further, visualization designers will find

novel visualization solutions more quickly by focusing on the problem’s

source (optimizing working memory demand) rather than on the symptoms

of the problem. The problem’s source can occur in:

• The Early stage: Due to bottom-up attention and Gestalt principles,

visual-spatial biases may result in a poorly perceived and poorly under-

stood visualization. These biases include boundaries of continuous data.

Boundaries may cause conceptual categories that do not exist, and distort

categories that do exist. Some boundaries invoke a containment heuristic,

resulting in viewers reducing continuous data to a binary understanding,

as in the Cone of Uncertainty (Boone et al., 2018; Padilla et al., 2017).

• The Middle stage: Schema errors occur when the visual description

does not match the instantiated schema (e.g., judging walking distance

and direction from the diagrammatic London Tube map, Fig. 10).

Other errors may occur at this stage due to the viewer’s unfamiliarity

with uncertainty, resulting in a deterministic interpretation (Savelli &

Joslyn, 2013).

• The Late stage: When people make decisions and perform actions, fram-

ing the data in complex or unfamiliar domains (i.e., probability) leads to

poor decision-making. However, this outcome can be circumvented by

reframing the data in a more intuitive (i.e., frequency) framing, allowing

early and middle stage processes to lead to fully informed decision-

making.

A key takeaway from this work is that a sweet spot exists in workingmemory

demand. If uncertainty visualizations require too much working mem-

ory demand, as in those that require multiple schemas, viewers will become

overloaded and not be able to complete a task accurately. However, in

some cases, if a viewer fails to use working memory, they may rely on an inef-

fective or misleading heuristic. More work is needed to identify this sweet

spot in the working memory demand of uncertainty visualizations. A path

forward would be to measure working memory more directly in visualiza-

tion experiments. Methods such as pupillometry, EEG, and fNIRS can

provide relatively accurate working memory demand proxies but are rarely

used in visualization research (for exceptions see, Padilla, Castro, Quinan,

Ruginski, & Creem-Regehr, 2019; Peck, Yuksel, Ottley, Jacob, & Chang,

2013). More work is needed to determine which visualization techniques

and tasks are working-memory demanding to predict when errors will occur

more accurately.
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We argue that visualizations that utilize frequency framing are more

likely to find the sweet spot in working memory demand, including icon

arrays (Zikmund-Fisher et al., 2014), quantile dot plots (Fernandes et al.,

2018), hypothetical outcome plots (Hullman et al., 2015), and some ensem-

ble plots (Liu et al., 2019). Frequency-framing visualizations convey prob-

abilistic data in a way that is more intuitive to understand, requiring less

working memory then other techniques. Further, frequency-framing visu-

alizations capitalizes on the visual system’s substantial processing power to

interpret the probabilistic data. However, such visualizations are not entirely

free of errors. For example, ensemble hurricane visualizations can lead

viewers to think that all the forecasted hurricane paths are shown, which

is a misunderstanding of the probabilistic data (Padilla, Creem-Regehr,

et al., 2020).

Of the visualization research reviewed in this chapter, visualizations that

summarize probabilistic data using ranges, boundaries, or intervals produce

systematic and consistent reasoning errors. Part of the reason that summary

uncertainty visualizations consistently lead to poor performance is that they

can produce errors at every stage of the decision-making process. Of note are

the errors produced by bottom-up attention, which are challenging for

working memory to overcome. Concerningly, summary uncertainty visu-

alizations are the most common visualization type used in scientific journals

(e.g., confidence intervals and means). Researchers interested in effectively

communicating the uncertainty in their science should opt for distributional

visualization techniques, particularly those that use frequency framing. For

an in-depth review of effective uncertainty visualization techniques, see

Padilla et al. (2021).
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