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Abstract— Cognitive science has established widely used and validated procedures for evaluating working memory in numerous
applied domains, but surprisingly few studies have employed these methodologies to assess claims about the impacts of visualizations
on working memory. The lack of information visualization research that uses validated procedures for measuring working memory
may be due, in part, to the absence of cross-domain methodological guidance tailored explicitly to the unique needs of visualization
research. This paper presents a set of clear, practical, and empirically validated methods for evaluating working memory during
visualization tasks and provides readers with guidance in selecting an appropriate working memory evaluation paradigm. As a case
study, we illustrate multiple methods for evaluating working memory in a visual-spatial aggregation task with geospatial data. The
results show that the use of dual-task experimental designs (simultaneous performance of several tasks compared to single-task
performance) and pupil dilation can reveal working memory demands associated with task difficulty and dual-tasking. In a dual-task
experimental design, measures of task completion times and pupillometry revealed the working memory demands associated with
both task difficulty and dual-tasking. Pupillometry demonstrated that participants’ pupils were significantly larger when they were
completing a more difficult task and when multitasking. We propose that researchers interested in the relative differences in working
memory between visualizations should consider a converging methods approach, where physiological measures and behavioral
measures of working memory are employed to generate a rich evaluation of visualization effort.

Index Terms—Working Memory, Cognitive Effort, Evaluation Methods, Pupillometry, Geographic/Geospatial Visualization, Quantita-
tive Evaluation

1 INTRODUCTION

What makes one visualization better than another? Although seem-
ingly simple, the question of how to objectively evaluate visualiza-
tion quality is far from answered. In addition to important user ex-
perience goals, such as memorability [34], engagement [5], and en-
joyment [76], one way to evaluate visualizations is to consider task-
specific usability criteria [75], such as how easy or difficult it is
for a user to complete the given task. For example, accuracy is a
commonly used usability criterion for visualization quality, because
a highly memorable or enjoyable visualization that misleads viewers
is of poor quality [86]. Visualizations that elicit a prompt and accu-
rate understanding of the data have clear user experience benefits, but
what can these measures actually tell us about how hard or easy it is
for users to complete their goals with the visualization? In this pa-
per, we take a critical look at the conclusions one can and cannot draw
from measures of speed and accuracy, based on cognitive processing
mechanisms. We also detail less frequently used measures that focus
on examining the mental effort associated with completing a visual-
ization task. Further, we advocate for a converging methods approach
(i.e., using multiple measures to examine phenomena that cannot be
measured directly, such as mental effort), to create a clearer and more
objective picture of visualization quality.

In cognitive and visualization science, there is no consensus on how
effectively tests of accuracy and speed measure mental effort. Some
researchers propose that accuracy and speed reflect the cognitive ef-
fort required to complete a task [39, 49, 80]. Borrowing the physical
analogy used by Shenhav et al. [80], if one’s task is to lift an object
to a given height, the task demands would include the weight of that
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object, the height, and the affordance of the object to the task of being
lifted. It is easier, for example, to lift a 20kg barbell over your head
than a 20kg fish tank because the barbell was designed for and bet-
ter affords lifting. Similarly, different visualization techniques vary in
how effectively they enable the completion of a given task (i.e., their
task affordances). Continuing with the analogy, the task demands and
the capabilities of one’s muscles provide a range of attainable per-
formance outcomes for lifting the object. The amount of effort one
applies to lift the object modulates the actual outcome, which is mea-
sured by both one’s success in lifting the object to the required height
and the speed at which this objective is achieved. Using this logic, it
could be argued that cognitive effort modulates the speed and accuracy
of a person’s performance related to a given visualization task.

However, numerous visualization researchers (e.g., [33, 34]) and
cognitive scientists (e.g., [38, 44, 94]) have pointed out issues with
measures of speed and accuracy. For example, trade-offs between
speed and accuracy are not fixed across tasks or users [44], speed
and accuracy can lack the required precision to measure cognitive ef-
fort [94], and different levels of effort can produce the same accuracy
and speed responses [33] (reviewed in Section 2.1). As Kyllonen and
Zu state in a review of response time measures:

A respondent may respond quickly and correctly because
of a lucky guess, or slowly and correctly, but could have
answered correctly quickly if incentivized to do so. If a re-
spondent does not answer correctly, it could be due to not
knowing the answer, not spending enough time to process
the information fully, or having gotten confused while an-
swering and quitting. [44, p. 1].

Measuring speed and accuracy alone can be problematic, but these
measures are still necessary metrics for many contexts in visualiza-
tion research. To offset some of the issues associated with speed and
accuracy, we advocate for a converging measures approach where val-
idated measures of cognitive effort are used in conjunction with speed
and accuracy.

To use converging measures to evaluate mental effort in a visualiza-
tion context, first it is important to clearly define effort. Psychologists
commonly use the term working memory to describe a large compo-
nent of mental effort, and the definition of this term remains a hotly
debated topic. In line with a recent review on decision-making with vi-
sualizations [62], one definition useful for visualization research sug-



gests that working memory consists of multiple sub-components of the
mind that hold a limited amount of information for a finite period [20].
For example, in a study comparing the cognitive effort demands of net-
work diagrams in which some of the diagrams were filtered to show
only the task-relevant connections, Huanga et al. [33] found that in-
dividuals who viewed non-filtered diagrams had greater self-reported
cognitive load than those who viewed filtered diagrams. Presumably,
individuals who were shown all of the connections in the diagrams
had to direct their attention to only the task-relevant information in the
display. Cognitive science theories propose that this type of cognitive
control and attention direction requires significant working memory
(e.g., [42, 81]).

Cognitive science has developed and systematically tested various
measures of working memory fluctuations during a task, including
dual-task experimental designs (simultaneous performance of mul-
tiple tasks compared to single-task performance), pupillometry (the
dilation of one’s pupil), and neurological changes (for reviews, see
[3, 48, 52]). As summarized in Table 1, in the context of visualization
research, there are pros and cons to each of these working memory
evaluation techniques. One such consideration is the validity of the
measure, which can be used to formalize comparisons across empir-
ical measurement techniques [61]. Validity refers to how closely the
conditions of an experiment match real-world conditions (ecological
validity), the generalizability of the findings to other contexts (exter-
nal validity), and its ability to measure what it claims to measure (con-
struct validity) [61].

The goal of this work is to provide practical cross-domain method-
ological guidance for objectively evaluating working memory de-
mands in data visualizations. We focus on the most feasible mea-
sures of working memory for visualization researchers with high con-
struct validity: pupillometry and dual-task experimental designs. The
key contributions of this work include a critical discussion of working
memory evaluation techniques, a detailed outline of empirically tested
working memory demanding tasks, a case study comparing multiple
methods for measuring working memory effort in a complex visual-
ization task, and a discussion of open questions concerning objective
evaluations of visualization quality.

2 RELATED WORK

Utilizing pupillometry and dual-task experimental designs requires a
foundational understanding of working memory theory. The study of
working memory has been a vibrant topic in cognitive science for over
half a century [7], and thus an exhaustive discussion of the nuances in
this field is beyond the scope of this paper. However, in the following
sections, we detail the key concepts in working memory theory and
demonstrate how visualization researchers can use working memory
theory to evaluate visualization quality with pupillometry and dual-
task experimental designs.

2.1 Working Memory
One of the most hotly debated topics in cognitive science centers
around the exact definition of working memory [20]. The broadest
definition suggests that working memory consists of various compo-
nents that can hold a limited amount of transformable information for
a finite period [20, 62]. There are two critical concepts in this defini-
tion: 1) working memory is capacity limited [19, 23], and 2) working
memory functions decay over time (e.g., [19, 45]). For example, his-
torical research by Miller [56] found that people can remember seven
numbers +-two. Researchers have updated [57], refined [25], and chal-
lenged [25] this work since its introduction in 1956. This follow-up
work collectively illustrates that the amount of information that we
can hold in our mind for a short time is limited in capacity. The sec-
ond concept in this broad definition of working memory theory is that
it diminishes over time. Researchers such as Cowan et al. [22] sug-
gest that our ability to store information begins to decay after approx-
imately 5-10 seconds. The specifics of temporal decay vary based on
the task, type of information, and capacities of the participant [22].
Active rehearsal of information increases temporal capacity, but most
definitions of working memory include a passive storage component
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Fig. 1: The mental transformation required to correctly order the Y-
axis of a figure originally published in Padilla et al. [61].

that is time-limited without rehearsal or reactivation [20]. For exam-
ple, Cowan et al. [21] demonstrated that when rehearsal was prevented,
working memory task performance still correlated highly with cog-
nitive aptitude measures. Finally, contemporary theories also stress
that we use working memory to guide our attention to task-relevant
information and suppress automatic responses [42, 81]. Researchers
have integrated working memory theory into models of visualization
comprehension [66, 70], which have been updated by the Padilla et
al. [62] Model of Visualization Decision-making to include modern
approaches to working memory and decision-making theory.

Visualization studies commonly assert that some visualization tech-
niques can reduce cognitive effort (e.g., [31, 88, 8]). Researchers com-
monly use cognitive load theory to describe the influence of visualiza-
tions on working memory, which proposes that increases in working
memory are due to extraneous cognitive load (i.e., load associated with
the information communication method [60]). Researchers propose
that different visualization techniques vary in the amount of extrane-
ous load they demand of the viewer and thus differ in working memory
demand [33, 87, 36].

Researchers have attempted to understand the cognitive mecha-
nisms and processes that result in increases to cognitive load asso-
ciated with visualizations. For example, numerous studies find that
visualizations help users to more quickly and/or accurately perform
spatial tasks compared to textual representations of the same infor-
mation (e.g., [77, 83, 93]). Vessey and Galletta [93] propose that
the reason visualizations are more useful for spatial tasks involves the
concept of cognitive fit. Cognitive Fit Theory asserts that visualiza-
tions can match how users naturally think about the data, and when
there is a match, little working memory is needed [93]. For example,
when spatial data is represented spatially (e.g., geospatial data shown
in a map), there is a match, and little effort or working memory is
required to use the visualization effectively. However, when spatial
data is represented textually (e.g., geospatial data depicted in a table),
the viewer needs to mentally transform the tabular data into a geospa-
tial context [46], which requires significant working memory. When
there is a mismatch among any configuration of the users’ mental rep-
resentation (mental schema) [46], the visualization, and the task, the
users must mentally align the mismatched components, which requires
significant working memory [93]. Take, for example, the deceptive vi-
sualization practice of Y-axis reversal, shown in Figure 1 [61, 62, 64].
Figure 1 shows the population of Species X over time and indicates the
point at which a predator was introduced into the ecosystem. If view-
ers make a snap judgment, they will wrongly assume that the preda-
tor species was responsible for a drop in the population of Species
X [64]. However, viewers can apply working memory to complete a
mental transformation such that the Y-axis is correctly ordered (Figure
1 right), and draw inferences from this updated mental representation.
Then viewers would see that the introduction of the predator species
correlates with a rise in the population of Species X [61, 62].

In addition to increasing with mental transformations, working
memory demand also increases with task difficulty [41]. For exam-
ple, we postulate that low-level tasks such as retrieve value, find ex-
tremum, or find anomalies [2] likely require less working memory than
higher order tasks such as discovering novel patterns in the data. This
assertion is in line with work by Kahneman and Beatty [41], where
pupil dilation was found to increase along with difficulty for detect-



Table 1: Comparison of working memory evaluation techniques, in the context of visualization research.

Approach Measures Pros Cons and Practical Considerations

Standard Accuracy, speed [31, 93], and
self-report data [97, 33]

Easy to implement and compare findings to prior
work. Measures have real-world implications. Can
have high ecological validity.

Possible confounds (speed and accuracy trade-offs
and motivation). Users are often unaware of work-
ing memory demand. Can lack sensitivity to working
memory differences. Possibility of low construct va-
lidity. External validity will vary with experimental
conditions.

Dual-task designs Dual-task cost associated with
speed and accuracy [8, 88]

Empirically validated measure of cognitive effort.
Possibility of high ecological validity in contexts
where users are distracted. Relatively greater con-
struct validity than basic experimental designs that
measure speed and accuracy.

Possible confounds (speed and accuracy trade-offs and
motivation). Some inconclusive dual-task cost effects
in prior work [8, 88]. External validity will vary with
experimental conditions.

Pupillometry Pupil dilation Empirically validated measure of working memory,
with relatively greater construct validity than speed
and accuracy measures and possibility of high exter-
nal validity. Straightforward to measure with most
eye trackers. Highly sensitive to working memory
changes.

Eye-tracker needed and eye tracking data processing
required. Highly sensitive to image luminance. Pos-
sibility of high external validity, which can vary with
experimental conditions.

Neurological changes Electrical signals in the brain
using electroencephalography
(EEG) [4], and hemodynamic
responses with near-infrared
spectroscopy [68]

Greater construct validity than speed and accuracy
measures. Possibility of high external validity.

Requires access to expensive equipment and equip-
ment technicians. Findings can be difficult to inter-
pret. External validity may vary based on the hypothe-
ses of the experiment.

ing an auditory tone. Numerous subsequent studies similarly confirm
that working memory increases with task difficulty (e.g.,[1, 90]). For a
given task, there are a variety of ways to manipulate task difficulty. For
example, using identify and compare from the query phase of Brehmer
and Munzner’s visualization task typology [13], an easy identification
task would include identifying distinct patterns, and a difficult version
would involve identifying complex or obscured patterns. Likewise, an
easy comparison task would be to compare two values, and adding
additional comparisons would increase the task difficulty.

Researchers often use behavioral measures, such as time to com-
plete a task, accuracy, or subjective measures like self-report survey
data as a comparable metric for working memory (e.g., [11, 33, 88,
97]). A variety of issues can arise when using speed, accuracy, or self-
report measures alone as the only tests of working memory [48, 91],
particularly in a visualization context. Concerning speed and accuracy,
there are widely documented trade-offs that can make it difficult to at-
tribute findings to any one source [44, 50]. Take, for example, a simple
illustration proposed by Just et al. [38], where an addition problem (3
+ 2 + 5 + 2 + 3 + 1 + 4 + 6 + 1 = ?) is compared to a multiplication
problem (63 x 5 = ?). Just et al. [38] argue that the addition problem
requires fewer mental resources but may take longer to complete. In a
visualization context, users may enjoy a visualization and engage with
it more, or the visualization could spur curiosity and additional data
exploration, which could slow down the users but could also improve
performance outcomes (reviewed in [34]). Additionally, trade-offs be-
tween speed and accuracy are not fixed across tasks or users [44]. For
example, in one study, occupational psychologists found that in ad-
dition to working memory, a person’s job-perception, alertness, and
time pressure ultimately drive the outcomes of time on task, accuracy,
and the sustainability of mental effort [55]. Finally, significant perfor-
mance differences might not be observable in statistical analyses even
if there are significant differences in working memory demands, as
speed and accuracy can lack the required precision to measure work-
ing memory demands, particularly for binary decisions [47, 94]. Speed
or reaction time distributions are particularly problematic for measures
of central tendency as they tend to be positively skewed with outliers,
reducing the ability of Analyses of Variance (ANOVA) to detect sig-
nificant differences [72].

Self-report measures of cognitive effort [33] such as the NASA-
TLX [97] include their own caveats and limitations. For example,
when users can no longer monitor the working memory required by
a task at a meta-cognitive level, self-report measures under-represent

working memory demands [48, 96]. In fact, McKendrick and Cherry
[54] demonstrated that various NASA-TLX sub-scales, such as per-
ceived effort and perceived performance, correlated more with individ-
ual participants’ random variation than behavioral outcomes of either
in a spatial-memory task.

Some visualization researchers have sought to employ physiologi-
cal measures of working memory other than speed and accuracy in a
visualization task [3, 4]. Notably, Anderson et al. [4] demonstrated the
use of electroencephalography (EEG) to measure voltage fluctuations
resulting from ionic current within the neurons in the brain, while com-
paring several visualization techniques of boxplots. Although measur-
ing electrical activity in the brain has greater construct validity than
measures of speed and accuracy, this approach can be impractical for
most visualization researchers. In this paper, we focus on measures
that are both precise and feasible for visualization researchers: pupil-
lometry and dual-task paradigms.

2.2 Pupillometry
Guillaume de Salluste proposed that the eyes are the windows to the
soul [35], and more scientifically Michel Pierre Janisse described them
as “the only visible part of the brain” [35, p. 1]. Researchers in psy-
chology have been investigating the relationship between pupillom-
etry and mental effort since the 60s [40], and this work has seen a
resurgence in recent years (e.g., [82, 90]). Recently, HCI researchers
have also called for the use of eye-tracking measures to evaluate cog-
nitive load [36, 87]. The high-level conclusions from pupillometry
research suggest that pupil dilation is highly correlated with working
memory [90]. Pupillometry is currently a commonly used evaluation
method of working memory in numerous applications, such as the cog-
nitive state of drivers [48]. this paper, the term pupil dilation refers to
the increase in pupil diameter associated with the execution of a task
compared to the baseline pupil diameter measured when the viewer is
not completing the task [90]. For example,

Face a mirror, look at your eyes and invent a mathematical
problem, such as 81 times 17. Try to solve the problem and
watch your pupil at the same time, a rather difficult exercise
in divided attention. After a few attempts, almost everyone
is able to observe the pupillary dilation that accompanies
mental effort... [39, p. 24].

As Daniel Kahneman illustrates in this exercise, a long lineage of
research has revealed that our pupils dilate when we exert effort
(e.g., [40]; for review, see [52, 90]).



Table 2: Summary of secondary tasks.

Task Examples Difficulty Modality Mental Process

Memory
Span

Remember a series of N
numbers, words [84], or
sounds [18]

Easy
(N ≤ 3)
to hard
(N ≥ 6)

Visual or
auditory

Likely semantic
but potentially
spatial†

Operation
Span

Reading or listening to a
series of mathematical
operations and/or logical
statements [20]

Medium
to hard‡

Visual or
auditory

Likely semantic
but potentially
spatial†

Visuospatial
Memory
Span

Remember a visual array of
items [28] or sequence of
visual information [78]

Easy
to hard§

Visual Likely spatial
but potentially
semantic†

Continuous
Sequence

Listening to a series of words
or digits, then recalling an
item from N places back [52];
or counting backwards by
threes [65]

Easy
(0-back)
to hard
(+2-back)

Visual or
auditory

Likely semantic
but potentially
spatial†

† Depends on strategy employed
‡ Depends on series complexity
§ Depends on visual information complexity

Using neuroimaging techniques such as fMRI and two-photon mi-
croscopy, numerous studies find correlations between pupil dilation
and working memory (e.g., [38, 59]). There has been some debate
concerning the exact brain regions that are responsible for the pupil
dilation associated with working memory (for a full discussion of this
topic see [90]). Suffice to say, mounting evidence indicates that the
mental effort induced dilation response created by the sphincter and
dilator muscles in the pupil is highly related to the locus-coeruleus
norepinephrine (LC-NE) system [37, 52]. Researchers suggest that the
LC-NE system monitors the environment of cognitive demands [12]
and optimizes effort [79], among other functions.

In addition to the neurobiological support for pupillometry, mea-
sures of pupil dilation are relatively easy to collect with most eye track-
ers [90], making eyetracking methodology well suited to visualization
research [36]. However, as with all physiological measures, pupil size
is influenced by numerous factors, such as drowsiness, stress, drug
use, or luminance in the environment. Small changes in luminance
can have a significant effect on pupil dilation and, therefore, the lu-
minance of the stimuli, the lighting conditions of the room, and the
calibration of the monitor(s) should be carefully controlled. By sys-
tematically controlling for variations in conditions, either within the
experiment or with statistical procedures, researchers can gain a rela-
tively objective measure of working memory [9].

2.3 Dual-Task Paradigms
Cognitive science has developed a dual-task paradigm for comparing
the relative differences in cognitive workload between tasks, which
involves the simultaneous completion of two tasks [43]. In dual-task
paradigms, speed and accuracy measures are compared during primary
task performance and dual-task performance. During dual-task per-
formance, the participant completes the primary task and a working
memory demanding secondary task at the same time (see Step-by-step
Guide 1: Dual-task Designs). If significant working memory is re-
quired for the primary task, adding a working memory demanding sec-
ondary task will overload the capacity limited working memory sys-
tem resulting in longer task completion times and more errors. Dual-
task cost is the relative decrease in performance between the single-
and dual-tasks. Tasks that require more working memory will demon-
strate significantly larger dual-task costs. Dual-task paradigms have
been used to demonstrate performance decrements in many applied
settings, including visual and cognitive distractions while driving [16],
interacting with technology [14], visually searching for remembered
objects [26], and performing visualization tasks [8, 88].

In a dual-task experimental design, the secondary task should be
assessed for three key factors: the relative difficulty, the modality of

the task (e.g., visual or auditory), and the mental process (e.g., spa-
tial or semantic) (see Table 2 for an overview of common secondary
tasks). It is essential to select a secondary task that is an appropriate
level of difficultly in relationship to the primary visualization task to
gain relevant information about that primary task. If the secondary
task is too difficult, the user will likely be unable to complete both
tasks at the same time. For example, in driving when the secondary
task becomes too difficult, the driver must either stop the secondary
task or crash [15]. However, if the secondary task is too easy, the dual-
task cost will not be observed. Listening to the radio while driving,
for instance, does not have much of an effect on lane deviation, speed
changes, or braking times [85]. The goal is to provide users with a
secondary task that requires some of their pool of cognitive resources
but does not prevent them from accomplishing the primary task. To si-
multaneously tax users and avoid inordinately impacting the primary
task, researchers have developed a set of commonly used secondary
tasks [43]. In the following passages, we detail previously used sec-
ondary tasks that are well suited to visualization primary tasks.

Simple Memory Span Secondary Tasks
Mental operation tasks are one of the most commonly used classes of
secondary tasks, and they are well suited to use with visualizations as
they do not interfere with the response modality of visualization tasks.
These tasks require the user to remember and/or mentally manipulate
information in memory. The simplest of these tasks are memory span
tasks, which require a user to remember a sequence of numbers (i.e.,
digit-span) [57], words [88], or sounds [20]. Within the memory span
tasks, the difficulty of a task can be manipulated by increasing the
number of items to remember. For example, in the digit-span task,
a participant must remember a series of numbers, with seven to nine
being the upper bound of digits we can remember [57].

A substantial body of research explores how we remember informa-
tion, which suggests that we commonly chunk information together to
reduce mental effort. Chunking has been shown to rely on long-term
memory processes to aid retrieval [73], but has also been shown to
occur in immediate memory (i.e., without long-term memory consol-
idation) based on encoding of patterns or order [17]. A strategy to
discourage chunking involves the concept of semantic distance, which
is how closely the meaning of words are related to one another [74].
Words may belong to salient categories such as ’fruit’ or ’yellow ob-
jects’ that can have a short semantic distance. Words within the same
category can be chunked with other members of the category making
them easier to remember. For numbers, consider checking that the
numbers do not repeat and are not all even, multiples of 3, or other
salient groupings.

Operation Span Secondary Tasks
Another solution to chunking is to have participants manipulate infor-
mation in an operation span (OSPAN) task. These tasks usually in-
volve reading or listening to a series of mathematical operations, logi-
cal statements, or a mix of both. Some researchers [20] consider read-
ing and listening span tasks as the gold standard of working memory
tasks, because these tasks require participants to both remember and
manipulate information. In a listening span task, participants listen to
sentences and judge the sentence to be true or false, while also remem-
bering the last word in each sentence [23]. At the end of the span (i.e.,
four to five sentences), participants are asked to recall the last word of
each sentence out loud in order. For reading and listening span tasks,
difficulty can be modulated by the number of sentences participants
need to remember before recall. One challenge with OSPAN tasks is
the constantly changing number of items in memory across the span.
As each new sentence is presented, the required working memory in-
creases, making for a more variable working memory manipulation.

Visuospatial Memory Span Secondary Tasks
The counterparts of operation span tasks are visuospatial working
memory tasks [78, 92]. Many working memory theories suggest that a
dedicated component of working memory specifically stores and ma-
nipulates visuospatial information, commonly termed the visuospatial
sketchpad [6]. Visualization studies likely involve visuospatial work-
ing memory. An advantage of using a spatial working memory sec-



ondary task is that the task will likely tax the main resource pool that
participants will be using for the visualization task. However, there
is the possibility that even a simple spatial working memory task will
be too taxing to complete at the same time as a visualization task. A
sub-group of dual-tasking researchers refers to this effect as dual-task
interference, although members disagree about the extent of interfer-
ence across difficulty and modality [65, 95]. Additional research is
needed to evaluate the impact of using a visual-spatial working mem-
ory task as the secondary task while completing a visualization task.

One example of a visuospatial span task is to show participants an
image with an array of items such as circles with various colors in vari-
ous orientations. Participants must remember the color and location of
the circles while completing the primary task. Once the primary task
is complete, a circle of a particular color appears and the participants
are asked to report if that circle is in the remembered location [30] (for
more examples see, [78]).
Continuous Sequence Secondary Tasks
Continuous sequence secondary tasks are often referred to under the
umbrella of N-back tasks. The simplest version (i.e., the 0-back task)
requires participants to repeat visual or auditory information vocally or
with a key press immediately after its presentation, which continues at
a constant pace throughout the task. As one of the hardest secondary
tasks, auditory N-back tasks beyond the 0-back task require the par-
ticipants to listen to a continuous string of words or digits, remember
their order, and then recall a digit from N places back in the order
(usually out loud). For example, in a 2-back task, participants report
the digit two places back from the most recent number provided. In a
sequence of 5, 2, 8, 9, 1 . . ., participants would not respond to the first
two digits, then after hearing 8 say 5, and after hearing 9 say 2 [58].
Another popular version of a continuous updating task requires partic-
ipants to count backwards by 3s starting with a large number, such as
1986 [69].

Step-by-step Guide 1: Dual-task Designs

1. Select the primary visualization task based on your specific context.

2. To select an appropriate secondary task, identify the level of difficulty of the
primary visualization task. See Section 2.1 for discussion of task difficulty.

3. Select a secondary task with an appropriate level of difficulty in relation to
the primary task. If you have a hard primary task, select a medium or easy
secondary task (see Table 2 for guidance).

4. Decide whether you will use a between-, within-, or mixed-subjects design.
In all versions, when comparing two visualizations there will be four condi-
tions: (1) completion of the primary task with visualization A. (2) simultane-
ous completion of the primary and secondary tasks with visualization A. (3)
completion of the primary task with visualization B. (4) simultaneous com-
pletion of the primary and secondary tasks with visualization B.

Between-subjects design: Participants are randomly assigned to groups 1–4
and each group completes one condition. Analyze the primary task perfor-
mance between each group. Within-subjects design: Every participant com-
pletes all 4 conditions. Analyze how each user’s performance changes due
to both the visualization and dual-tasking. Mixed-design: Participants are
randomly assigned to one of two groups. Group 1 completes conditions 1–2.
Group 2 completes conditions 3–4. Analyze the changes in performance, per
person, between the single and dual-tasks (i.e., dual-task cost) across groups.

3 CASE STUDY

The goal of the current study is to illustrate a converging methods
approach for evaluating working memory demands in a visualization
task using a dual-task experimental design and pupillometry. To illus-
trate these methods, we draw on a geospatial visualization task from
Padilla et al. [63] for our primary task. This geospatial visual ag-
gregation task was selected to illustrate the application of a dual-task
paradigm in the context of a complex visual-spatial task with medium
difficulty. Medium difficulty was ideal to demonstrate the influence
of a secondary task. The task consisted of presenting viewers with a
Digital Elevation Model (DEM), which was visualized using a contin-
uous grayscale encoding (see Figure 3). For each DEM, red squares

were superimposed on the figure. Participants were tasked with decid-
ing which area within the red squares contained the highest average
elevation. This task required participants to mentally aggregate the
elevation data within each square and then compare the average val-
ues among the squares. But a binary choice task is not representative
of many visualization tasks, it was chosen because this design can be
manipulated to require more or less working memory in order to il-
lustrate dual-task cost effects in a controlled and predictable way. In
the current study, the difficulty of the task was manipulated by having
the viewer compare the average elevation between either two regions
or four regions, as shown in Figure 3. This difficulty manipulation
and binary task was selected because the increase in difficulty was
known a priori (i.e., the probability of randomly selecting a correct re-
sponse from two regions is 50% vs. 25% for four regions). Our goal
was simply to illustrate the use of multiple working memory measures
for visualization tasks, to provide an example of how to compare the
working memory demands between visualizations. Working memory
measures may be more informative for tasks that show a more substan-
tial speed/accuracy trade-off, or those in which efficiency measures are
less meaningful, such as tasks that focus on exploration and insight.

The secondary task that we selected was a version of the simple
memory span task, in which participants were tasked with remember-
ing seven non-repeating numbers while completing the primary visual-
spatial aggregation task. The memory span was selected because it
does not require spatial working memory, which might interfere with
the spatial aggregation task. Further, the memory span task selected
is of medium difficulty, which allows for appropriate dual-task cost
during both easy and hard visual-spatial aggregation tasks.

3.1 Hypotheses and Methods
In line with prior dual-task research (e.g., [30, 65]), we predict that the
comparison of the average elevations of two regions will require less
working memory than four regions. The present work seeks to demon-
strate the increased working memory associated with more complex
visualization tasks by evaluating dual-task costs in speed, accuracy,
and pupil dilation. Specifically, we predict the following:

H1. Response times and errors will increase with task difficulty. Ob-
servation of a main effect of task difficulty on speed and accuracy
would provide behavioral evidence that working memory increases
with task difficulty. This finding would also provide evidence that
tests of speed and accuracy are sensitive enough to measure the rise in
working memory required by spatially aggregating four regions com-
pared to two regions.

H2. Response times and errors will increase when completing both
the primary and secondary tasks compared to completing only the pri-
mary task. This finding would provide behavioral evidence that the
secondary task required significant working memory. Further, this re-
sult would propose that measures of speed and accuracy are sensitive
enough to pick up on the additional working memory required by a
simple memory span task, in the present context.

H3. There will be a greater increase in errors and response times from
the easy to hard tasks for dual-taskers compared to single-taskers.
More substantial dual-task costs for harder tasks would provide con-
verging evidence that harder visualization tasks require more working
memory than easier ones, compared to simple measures of speed and
accuracy. The contribution of evaluating the relative dual-task costs
is that prior research finds that dual-task cost is highly correlated with
working memory effort using neuroimaging measures (e.g., [32]).

H4. Pupil diameter will increase with task difficulty. A main effect
of task difficulty on pupil dilation would demonstrate the capacity of
pupillometry to measure differences in working memory when men-
tally aggregating four compared to two regions.

H5. Pupil diameter will increase when completing both primary and
secondary tasks compared to single-task performance. The main ef-
fect of dual-tasking on pupil dilation would indicate that pupil dilation
can be used to measure the increased working memory associated with
completing a secondary task.
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Fig. 2: Diagram depicting the experimental design sequence for the single-task (left) and dual-task (right) groups for
an easy trial.

A. Easy trial B. Hard trial

Fig. 3: Example stimuli representing easy trials (A) where two regions
were indicated by red boxes and hard trials (B) with four regions. For
each stimuli, participants were instructed to identify the red square that
contained the highest average elevation.

H6. Pupil diameter will be largest when dual-tasking and complet-
ing a hard task. Larger pupil dilation dual-task cost for harder tasks
compared to easier tasks would suggest that the combination of dual-
tasking measures and pupillometry can successfully magnify the in-
fluence of working memory and measure it successfully. The combi-
nation of dual-tasking and pupillometry can be desirable if important
differences in working memory are hard to detect due to the nature
of the tasks or because of simplified experimental lab settings. Pupil-
lometry should provide compelling evidence of working memory, as
a large body of research consistently finds a correlation between pupil
diameter and effort (for review, see [90]). Physiological measures also
reduce the variability that is produced by subjective reports of mental
processes, which can be highly variable [48].

The current study employs a mixed between- and within-subjects
design, in which one group of undergraduate students from the Psy-
chology Department at the University of Utah (n = 20, mean age
= 26.2, SD = 8.9, male = 6, female = 14) completed the dual-task
paradigm, while a second group completed only the primary visual-
ization task (n = 20, mean age = 24.6, SD = 9.2, male = 5, female =
15). These naive participants received no directed training on how to
read maps in the psychology curriculum. Participants received course
credit for participation in this study, which received IRB approval prior
to data collection. To test H4-H6, the current study also measured
participants’ pupil diameter using a Seeing Machines FovioTM Eye
Tracker and EyeWorksTM recording software [28].

3.2 Stimuli Generation
The experimental stimuli were generated from ten non-contiguous re-
gions of a 1x1 degree tile of the 1/3 arc-second DEM from the USGS
National Map 3D Elevation Program [89]. In line with similar work
by Padilla et al. [63], we normalized the data of each selected DEM

region and then mapped it to the lightness channel (L*) in CIELAB
while leaving a* = b* = 0. This process effectively encodes the data
with a perceptual grayscale color map. We then converted the resulting
color-mapped DEM regions to sRGB images for display. An overview
of the selected regions and their respective data ranges have been in-
cluded as supplemental material (osf.io/6u8em).

The resulting ten sRGB images were used as basemaps for the ex-
perimental stimuli. From each basemap, we created both easy and
hard stimuli, as shown in Figure 3. The easy stimuli highlighted
two regions and the hard stimuli highlighted four. Using the Mahy
et al. [51] benchmark for just-noticeable color differences (JNDs)
in CIELAB (∆ E∗ab = 2.3), the highlighted regions were selected to
have mean values that differed by two to four JNDs (mean ∆ E∗ab
∈ [5.3,7.8]), and then were layered on the sRGB basemaps in Photo-
shop. We also added a legend specifying a constant elevation range
of [75, 510] meters to each stimulus, as the actual data values are
not important to the experimental tasks. The relative perceived dif-
ferences were our primary interest, which we modeled and control for
via JNDs.

Half of the regions were chosen to ensure that merely selecting the
region with the highest point did not lead to correct responses. These
trick trials controlled for participants who were not doing the full men-
tal aggregation across regions but were instead using a simpler strat-
egy of selecting the region with the single highest point, as observed
in Padilla et al. [63]. To generate additional trials, we rotated (0◦and
90◦) and reflected (no reflection and reflection over the vertical center
line) the ten basemaps, which resulted in a total of 40 trials for the easy
condition and 40 trials for the hard condition.

3.3 Task and Design
Participants were randomly assigned to either the single or dual-task
group. After signing a consent form, participants in the single-task
group received instructions for the task and then one practice trial. For
each trial, participants were randomly shown either an easy (i.e., two
regions) or hard (i.e., four regions) stimulus for five seconds. After
five seconds the experiment would progress to a response screen that
included only the red squares in the same location as on the stimuli but
on a white background (See Figure 2). Participants were instructed
to click as quickly and accurately as possible in the red squares that
previously contained the highest average elevation. Click speed and
accuracy were recorded. Participants completed 40 trials (20 easy and
20 hard, randomly ordered) and then took a mandatory two-minute
break and completed the other 40 trials (20 easy and 20 hard, randomly
ordered).

The participants in the dual-task group completed the same primary
task as those in the single-task group but before viewing each stim-
uli they were shown a different randomly selected seven-digit non-
repeating number for five seconds. Participants were instructed to
remember each corresponding seven-digit number while completing
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Fig. 4: Each plot shows the effects of the experimental group and task difficulty on accuracy (A), task completion time (B), and pupil dilation
(C). Error bars show +/- 95% confidence intervals. Error bars for pupilometry were created by taking the average pupil dilation per trial.

each trial of the primary task. After indicating the region with the
highest average elevation, they then entered the number they remem-
bered in a text box. The accuracy of the number that they entered in
the text box was recorded.

All participants completed the experiment on the same laptop in the
same location in a room one at a time. The visual angle of the lap-
top screen was 24.08◦vertical and 41.34◦horizontal. The eye tracker
was placed at the bottom of the screen and angled at 30◦. The See-
ing Machines Fovio Eye Tracker and software was calibrated using a
four-point calibration procedure that was conducted twice, once at the
beginning of the experiment and again after the two-minute break. The
resolution of the laptop display was set at 1920 x 1080.

3.4 Analyses
Multilevel logistic regression models using the lme4 package [10] in
R [71] were employed to account for variance in user accuracy, speed,
and pupil dilation with task difficulty (easy and hard trials) and exper-
imental group (single and dual-task groups) as predictors. Multilevel
models were utilized due to their appropriateness for nested data struc-
tures (in this case, repeated measurements within persons) and binary
outcome data. The following sections detail the specific findings from
the accuracy, speed, and pupil dilation analyses. In each of the mod-
els, we included the covariate interactions of trick trials * experimental
groups and trick trials * task difficulty. These covariates allowed the
analysis to control for cases where individuals used the strategy of se-
lecting the region with the highest single point rather than comparing
the average elevation per region as instructed. The strategy of select-
ing the region with the highest single point was observed in Padilla
et al. [63] and does significantly predict variance in accuracy, speed,
and pupil dilation. However, as this effect is specific to the task and
not relevant to the goal of illustrating a dual-task experimental design
with pupillometry, we did not detail the results of the trick trial co-
variate terms in the body of the paper. The full output of our models
including covariates is available in the supplemental materials, along
with the data and executable code to generate the analyses. The statis-
tics in the following sections control for the effect of trick trials. In
other words, all effects reported are after removing any effect of trick
trial on accuracy, speed, and pupil dilation.

3.5 Accuracy
Each trial was considered either correct (1) or incorrect (0). We
checked to determine if dual-task participants were completing the
secondary task prior to analysis. Overall, individuals in the dual-task
condition answered the correct number in the secondary task 64.6%

of the time (SD = 47.8%). Individual’s mean correct responses on the
secondary task ranged from 18.8% correct to 98.8% correct, giving us
confidence that we had selected a sample with a representative spread
of working-memory capacity in the general population. Prior to anal-
yses, experimental group (single-task = -0.5, dual-task = 0.5) and task
difficulty (easy = -0.5, difficult = 0.5) were contrast coded to test group
differences, and trick trials were contrast coded (non-trick = -0.5, trick
= 0.5) as a control variable. The fixed factors included in the multi-
level model consisted of the interaction between experimental group
* difficulty, interactions with trick trials, the average difference in L*
between regions within a given image, and the lower order terms. The
average L* difference was added to control for any effects that the lim-
ited variation in JND averages across different stimuli regions might
have had on task difficulty. Participants were included as random ef-
fects. Note that the accuracy effects (β ) are reported using log odds
in the text, but converted to accuracy odds-ratios for easy interpreta-
tion in the figures. Odds are defined as the ratio of correct responses
to incorrect responses, and an odds-ratio is calculated as the ratio of
the odds of two groups. An odds-ratio of 1 indicates the same odds
of answering correctly between the groups, an odds-ratio below one
indicates that the group coded 0.5 has lesser odds of answering cor-
rectly, and an odds-ratio above one indicates that the group coded 0.5
has greater odds of answering correctly.

In examination of H1, more difficult trials (with four regions)
elicited significantly worse accuracy on average than easy trials (with
two regions) (see Figure 4 A; β = -1.25, SE = 0.08, Odds-ratio = 0.29,
p < .001, 95% CI [-1.41, -1.09]). As we deliberately selected tasks
where chance performance for two regions was 50% and 25% for four
regions, the finding that performance was significantly worse for the
harder trials confirms our manipulation.

For H2, our analysis did not provide evidence that individuals in the
dual-task condition differed in accuracy from individuals in the single-
task condition (β = -0.14, SE = 0.14, p = 0.32, 95% CI [-0.42, 0.14]).
Although there was not a main effect of experimental group, an inter-
action between experimental group and task difficulty was observed
for accuracy.

To evaluate H3, we examined the interaction between experimental
group and task difficulty. The results of our analysis suggest that dual-
task costs are influenced by the difficulty of the task but not in the
specific way we predicted (β = 0.35, SE = 0.16, p = 0.03, 95% CI
[0.03, 0.66]).

To examine the significant interaction between experimental group
and task difficulty, we conducted two post hoc multilevel models in
which we recoded the task difficulty variable. One model included



task difficulty recoded such that the easy trials were the referent (easy
= 0, hard = 1) and the other with the hard trials was the referent (hard =
1, easy = 0). In each of these models, the interaction between difficulty
and experimental group was used to predict the variance in accuracy
along with the lower order terms, and the average *L between regions
for each stimulus was included as a covariate. This analysis revealed
that there was a main effect of experimental group for the easy tri-
als (β = -0.30, SE = 0.15, Odds-ratio = 0.74, p = 0.049, 95% CI
[-0.61, -0.0003]) but not for the hard trials (β = 0.03, SE = 0.15, Odds-
ratio = 1.036, p = 0.81, 95% CI [-0.25, 0.32]). These results suggest
that for easy trials, individuals who completed only the primary task
demonstrated significantly better performance than those who com-
pleted both tasks, and that there was no difference in performance for
the hard tasks between groups. These findings do not support our pre-
dictions in H3.

Key findings from the analysis of accuracy:

• Individuals in the single-task group had greater accuracy with the
easier trials compared to individuals in the dual-task group.

The findings of this analysis are in line with prior work that re-
vealed inconclusive evaluations of visualizations using only measures
of accuracy in a dual-task paradigm [88]. We propose that measures
of accuracy, particularly binary judgments (e.g., correct or incorrect),
may not be fine-grained enough to pick up on important differences
in working memory between visualizations. Further, we advocate for
a converging methods approach, where several evaluation techniques
are utilized, including task completion times and pupil dilation, as de-
tailed in the following sections.

3.6 Task Completion Time
In addition to accuracy, the speed by which users clicked in their se-
lected region was recorded. When participants accidentally clicked
multiple times or changed their selection, the click speed associated
with their final selection was used in the following analysis. In addi-
tion, any trial where an individual’s mean click time was greater than
three standard deviations within their group was removed prior to anal-
ysis. In total, 51 out of 3200 trials (1.6%) were removed as outliers.
We used the same model as in the accuracy analysis but with task com-
pletion time as the outcome variable and a Gaussian distribution was
fitted.

Our results revealed that when individuals completed the difficult
trials, they reacted 83 ms slower on average than when they did the
easy trials (see Figure 4 B; β = 83.42, SE = 10.16, p < .001, 95% CI
[63.5, 103.3]), which supports H1. In line with prior work [90], this
result provides converging evidence that working memory demands
increase along with task difficulty.

In evaluation of H2, we found that individuals in the dual-task
group reacted 141 ms slower on average across all trials than indi-
viduals in the single-task group (β = 141.04, SE = 56.71, p < .012,
95% CI [30, 252]). This finding supports H2 and provides behavioral
evidence that more working memory is required to do two tasks at the
same time than one task in a visualization context. The differences
in response times between individuals in the dual-task and single-task
groups can be seen in Figure 4 B.

For H3, the results of this analysis did not reveal a significant inter-
action between experimental group and task difficulty, meaning that
individuals in both groups showed the same relative changes in re-
sponse times for easy and hard trials.

Key findings from the analysis of task completion time:

• Increased task difficulty resulted in significantly longer response
times.

• Individuals who simultaneously completed both the primary and
secondary tasks responded significantly slower than individuals
who completed only the visualization task.

• Task completion time was not sensitive enough to measure dual-
task costs.

The response time findings expand our understanding of the work-
ing memory associated with difficulty and dual-tasks, beyond an anal-
ysis of accuracy alone. However, measuring only the swiftness of a
viewer’s response may not be sensitive enough to provide a full pic-
ture of the working memory utilized in these tasks. For this reason,
we go further by also considering how pupil dilation can enrich our
ability to evaluate relative working memory differences required by
visualizations and tasks.

3.7 Pupil Dilation Response
The pupil dilation response refers to a stimulus-reactive response of
the pupil to dilate when a person puts effort toward a goal-directed
behavior. The pupil dilation response makes this physiological mea-
sure useful for indicating the inherent effort of certain activities, such
as making decisions with visualizations. In an examination of H4-
H6, the viewers’ baseline pupil diameter was compared to the pupil
diameter during each trial. For H4, we examined the change in pupil
dilation between easy and hard trials. To test H5, we compared the
change in pupil diameter for participants in the single and dual-task
groups, and for H6, we examined the influence of the interaction be-
tween experimental group * task difficulty on pupil dilation. Prior to
analysis, the eye tracking data was cleaned using a trackloss proce-
dure [24], in which changes of greater than .5 units were removed,
indicating blinks and temporary dropped calibration of the fovea [53].
Minimum baseline pupil dilation was collected at the beginning of the
study for 40 seconds while the participants viewed the start screen of
the study. The baseline pupil dilation was calculated for each partic-
ipant and then subtracted from the participant’s pupil dilation during
the study to compute the pupil dilation response.

A similar multilevel model in R was used as in the prior analyses;
however, the average lightness of each image, the average lightness
of the regions in a given image, and the average relative difference in
lightness between the regions per image were added as fixed covariates
to help control for the influence of luminance on pupil dilation. One
participant from the single-task group was removed from this analysis
due to the eyetracking software’s failure to record. The results in the
following paragraphs account for the variance in pupil dilation over
and beyond the significant effects of the perceived luminance varia-
tion across images. The full output of the model, including effects of
lightness, can be found in the supplemental materials.

The results of the pupil dilation analysis revealed a main effect of
task difficulty such that individuals’ pupil diameters were significantly
larger during harder tasks compared to easier tasks (see Figure 4 C; β

= 0.009, SE = 0.001, p < .00, 95% CI [0.007, 0.01]), which provides
support for H4. Together with the response speed data, converging
evidence indicates that more working memory is required to complete
the hard spatial aggregation task compared to the easy task. For H5,
there was also a main effect of experimental group (β = 0.15, SE =
0.06, p < .00, 95% CI [0.05, 0.26]), suggesting that individuals in
the dual-task group had significantly larger pupils compared to those
in the single-task group. Further, there was a significant interaction
between experimental group * task difficulty, which provides evidence
for H6 (β = 0.036, SE = 0.001, p < .00, 95% CI [0.032, 0.039]). This
interaction can be observed in Figure 4 C.

To break down this interaction, we conducted post hoc linear re-
gression analyses on the dual-task and single-task groups separately,
where task difficulty was used to predict pupil dilation. Then we com-
pared the slopes of the two models, which revealed that individuals in
the dual-task group had a larger increase in pupil diameter from easy
to hard trials (β = 0.04, SE = 0.002, p < .001), compared to those in
the single-task group (β = .003, SE = .001, p = .005)(t = 17.06, p <
.001), which is evident in Figure 4 C. This finding illustrates the classic
relationship between dual-task cost and task difficulty, in which tasks
that are more difficult have greater dual-task cost. The pupillometry
results provide additional converging evidence that individuals who
completed both tasks were under greater working memory load than
those who completed one task and that dual-taskers’ load increased
during difficult trials.

Key findings from the analysis of pupil dilation:



• Pupillometry revealed the classic dual-task cost, where individu-
als with increased working memory load from a demanding sec-
ondary task show larger changes in pupil dilation from easy to
hard tasks compared to individuals under less working memory
load.

• These findings illustrate how pupillometry can be more sensitive
to changes in working memory load compared to measures of
speed and accuracy.

In line with the large body of work that finds that pupil dilation is
a consistent measure of mental effort [90], this analysis suggests that
pupillometry can be used as an objective measure of working memory
and thereby as a relatively stable evaluation metric for visualizations.

4 DISCUSSION OF RESULTS

The selection of an appropriate evaluation technique requires careful
consideration in visualization research. A vibrant body of research
proposes many user experience goals (e.g., memorability, engagement,
and enjoyment; [75]), which we agree can be essential metrics of vi-
sualization quality. Here we suggest that in order to achieve user
experience goals, minimum usability criteria need to be met. Accu-
rately measuring the relative capacity of visualizations to clearly and
effectively visually communicate data in itself is challenging. One ap-
proach that we detail here involves the examination of working mem-
ory during visualization tasks as a measure of visualization effort. In
a case study, we illustrated the use of both a dual-task paradigm and
pupillometry to test the working memory load associated with easy
and hard geospatial aggregation tasks. The results of the case study
reveal that when completing more difficult visualization tasks, partic-
ipants have longer task completion times than for easier tasks. Addi-
tionally, response times are sensitive enough to pick up on the influ-
ence of dual-tasking; individuals who completed a secondary working
memory demanding task had significantly longer response times than
those who completed only one task. Although measures of speed and
accuracy can reveal some differences associated with working mem-
ory, they were not sensitive enough to expose the full impact of work-
ing memory load in this experiment. Our findings illustrate that pupil-
lometry was able to show the lower dual-task costs associated with
easier visualization tasks compared to the higher dual-task costs of
more difficult tasks. We find that pupillometry is highly sensitive to
differences in working memory, making pupillometry a viable physi-
ological evaluation option for visualization practitioners.

Although this discussion of visualization evaluation focuses on
measuring working memory fluctuations within task, another approach
is to measure users’ working memory capacity [49, 67, 78, 92], known
as individual differences measures. For example, Zhu and Watts [98]
found that individuals with low working memory capacity had dif-
ficulty using certain types of network diagrams. This approach is
noteworthy because the findings reflect real differences in users’ abil-
ities [27] that should be considered in visualization research. Finding
that one type of visualization is easier for people with low working
memory capacity to use would suggest that the visualization requires
less working memory. An individual differences approach represents
a perspective to research that should be highlighted as it focuses on re-
moving barriers for people with different abilities and in doing so im-
proves the visualization experience for all users [49, 67]. An individ-
ual differences approach also has drawbacks, such as requiring large
numbers of participants to examine the difference between groups.
Further, it can be hard to find a group of participants with a suffi-
ciently wide range of differences in working memory capacity or other
individual differences. Finally, dual-tasking and individual differences
paradigms are not mutually exclusive.

In addition to the method of evaluation, researchers should consider
the ability of the visualization task to reveal differences in working
memory. In the current case study, we employed a simple choice task
that produced a binary (correct or incorrect) measure. Binary measures
might not be sensitive enough to pick up on important differences in
working memory between visualizations. An alternative approach is to
have participants perform a task that produces a continuous outcome

measure. For example, in the prior work of Padilla et al. [63], par-
ticipants in one task reported the average elevation of a region rather
than comparing the average elevation in multiple regions. Considering
construct validity (the capacity of a metric to measure what it claims
to measure [63]) can help to formalize evaluation of the pros and cons
of various outcome metrics.

Beyond the considerations for the primary task, researchers inter-
ested in dual-task paradigms should consider the influence of different
types of secondary tasks on the primary visualization task. Here we
used one of the most conservative types of working memory demand-
ing secondary tasks. However, researchers who have examined simple
visual-spatial working memory tasks find large dual-task costs when
presenting viewers with two visual tasks [29, 30]. Researchers might
find a greater dual-task costs with a secondary task that requires spa-
tial working memory, but that hypothesis remains untested for a com-
plex visualization task. This approach may be more sensitive to subtle
differences between visualizations, but may also cause an overload,
resulting in failure to complete either task or ignoring one.

A variety of limitations exist in the presented case study that we
would suggest considering in future instantiations of dual-task ex-
periments and pupillometry. Researchers might want to consider us-
ing a fully within-subjects design rather than the mixed within- and
between-design used here. We used a mixed design because we
wanted to illustrate a comparison between groups, which are com-
monly used in visualizations studies that compare visualization tech-
niques. Comparing dual-task cost between groups is not as straight-
forward as comparing dual-task costs within a subject. Further, we
thought that there would be a learning effect, where users would be
faster and more accurate in the second block. Although this might be
the case, it is likely that more variability in responses would be ob-
served by comparing judgments from participants in different groups
than the variability produced from learning. Further, learning effects
are systematic and easier to account for in analysis procedures than
non-systematic variability across individuals.

Additionally, we suggest that researchers consider controlling for
the luminance differences within the stimuli [9]. Our approach was
to normalize the lightness within the DEMs, but we did not control
for the average luminance in an image. In the pupillometry analysis,
we attempted to account for differences in luminance by using light-
ness measures as covariates in our model and found that the lightness
variation accounted for a significant proportion of variance in pupil di-
lation. We also controlled for the average lightness in the regions and
the average difference in lightness in the regions for each image. Since
lightness represents our perception of luminance value rather than the
actual physical luminance value, it may not be the optimal choice for
controlling for luminance effects on physiological responses, but it
may be a sufficient proxy in certain situations (e.g., when looking at
average values). An alternative approach to deal with luminance is-
sues would be to use the model propose by Bastian et al. [9], which
accounted for 70% of luminance differences when tested in six lumi-
nance conditions.

5 CONCLUSIONS AND CONTRIBUTIONS

In this paper, we provided a critical discussion of working memory
evaluation techniques and described essential concepts in working
memory theory. We detailed empirically validated tests of working
memory and the selection of an appropriate working memory demand-
ing task. To illustrate the utility of these approaches, we provided
a case study using several converging methods for measuring working
memory in a visualization task. We propose that researchers interested
in the relative differences in working memory between visualizations
should consider a converging methods approach, where multiple tests
of working memory are employed to generate a rich evaluation of vi-
sualization quality.
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