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Abstract 

Ensemble and summary displays are two widely used methods for representing visual-spatial 

uncertainty, and there is disagreement about which is the most effective technique for 

communicating uncertainty to the general public. Visualization scientists create ensemble 

displays by plotting multiple data points on the same Cartesian coordinate plane. Despite their 

use in scientific practice, it is more common in public presentation to use visualizations of 

summary displays, which scientists create by plotting statistical parameters of the ensemble 

members. While prior work has demonstrated that viewers make different decisions when 

viewing summary and ensemble displays, it is unclear what components of the displays lead to 

diverging judgments. This study aims to compare the salience of visual features—or visual 

elements that attract bottom-up attention—as one possible source of diverging judgments made 

with ensemble and summary displays, in the context of hurricane track forecasts. We report that 

salient visual features of both ensemble and summary displays influence participants’ judgments. 

Specifically, we find that salient features of summary displays of geospatial uncertainty can be 

misunderstood as displaying size information. Further, salient features of ensemble displays 

evoke judgments that are indicative of accurate interpretations of the underlying probability 

distribution of the ensemble data. However, when participants use ensemble displays to make 

point-based judgments, they may overweight individual ensemble members in their decision-

making process. We propose that ensemble displays are a promising alternative to summary 

displays in a geospatial context but that decisions about visualization methods should be 

informed by the viewer’s task.  

Keywords: ensemble data, summary display, visual salience, hurricane forecast, 
visualization cognition, geospatial data 
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Significance 

 Understanding how to interpret uncertainty in data, specifically in weather 

forecasts, is a problem that affects visualization scientists, policymakers, and the general 

public. For example, in the case of hurricane forecasts, visualization scientists are tasked 

with providing policymakers with visual displays that will inform their decision on when 

to call for mandatory evacuations and how to allocate emergency management  

 resources. In other circumstances, the general public may view hurricane forecasts to 

make decisions about when and how to evacuate. Even though these types of decisions 

are costly and have a high impact on health and safety, the literature provides few 

recommendations to visualization scientists about the most effective way to display 

uncertainty in hurricane forecasts to a novice audience. Previous research has shown that 

novice viewers misinterpret widely used methods for visualizing uncertainty in hurricane 

forecasts. The current work examines how novice users interpret two standard methods 

for displaying uncertainty in hurricane forecasts: ensemble and summary displays. We 

demonstrate how salient elements of a display—or elements in a visualization that attract 

attention—can influence interpretations of visualizations. We also provide specific 

recommendations based on empirical evidence for best practices with each technique.  

Introduction 

 Ensemble data is the most commonly used type of forecast data across many 

scientific domains such as weather prediction and climate modeling (Sanyal et al., 2010). 

Scientists create ensemble data sets by generating or collecting multiple data values or 

ensemble members (Brodlie, Osorio, & Lopes, 2012; Potter et al., 2009). Then scientists 

plot all, or a subset of the ensemble members, on the same Cartesian coordinate plane, 
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creating an ensemble display (Harris, 2000). Despite ensemble display use in scientific 

practice, it is more common to utilize summary displays for public presentation (Pang, 

2008). Scientists construct summary displays by plotting statistical parameters of the 

ensemble members such as the mean, median, distribution, standard deviations, 

confidence intervals and with some advanced techniques, outliers (Whitaker, Mirzargar, 

& Kirby, 2013).  Among the studies that have attempted to assess the efficacy of 

ensemble and summary visualizations, there is disagreement about the best method for 

communicating uncertainty to the general public. This work aims to test the efficacy of 

both approaches in the context of hurricane forecasts. 

 Supporters of ensemble displays suggest that there are benefits to this 

visualization method including, 1) Ensemble displays depict all or the majority of the 

ensemble data, making a representative portion of the data visually available (Liu et al., 

2016). 2) Ensemble displays depict non-normal relationships in the data such as bimodal 

distributions, perceived as discrete clusters (Szafir, Haroz, Gleicher, & Franconeri, 2016). 

3) Ensemble displays can preserve relevant outlier information (Szafir et al., 2016). 4) 

Viewers can, in some cases, accurately report some statistical parameters depicted by 

ensemble displays, such as probability distributions (Cox, House, & Lindell, 2013; Leib 

et al., 2014; Sweeny, Wurnitsch, Gopnik, & Whitney, 2015; Szafir et al., 2016), trends in 

central tendency (Szafir et al., 2016), and mean size and orientation (Ariely, 2001) ( for 

comprehensive reviews see, Alvarez, 2011; Whitney et al., 2014). Sweeny et al. (2015) 

further showed that children as young as four could accurately judge the relative average 

size of a group of objects. Researchers argue that viewers perceive the aforementioned 

data parameters in ensemble displays because they can mentally summarize visual 
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features of ensemble displays by perceiving the gist or integrating ensemble data into rich 

and quickly accessible information (Correll & Heer, 2017; Leib et al., 2014; Oliva & 

Torralba, 2006; Rousselet, Joubert, & Fabre-Thorpe, 2005). To this point, Szafir et al. 

(2016) detailed four types of tasks (identification, summarization, segmentation, and 

structure estimation) that are well suited for ensemble displays because they utilize 

ensemble coding or the mental summarization of data. In line with this work, Correll and 

Heer (2017) found that participants were effective at estimating the slope, amplitude, and 

curvature of bivariate data when displayed with scatter plots. In contrast, researchers 

found that viewers had a strong bias when estimating correlations from scatter plots but 

also demonstrated that the laws that viewers followed remained similar across variations 

of encoding techniques and data parameters, such as changes in density, aspect ratio, 

color, and the underlying data distribution (Rensink, 2014, 2016). In sum, there is 

evidence that adult novice viewers and children can, in some cases, derive statistical 

information from ensemble displays and that ensemble displays can preserve potentially 

useful characteristics in the ensemble data. 

 While previous research indicates that there are various benefits to ensemble 

displays, there are also some drawbacks. The primary issue with ensemble displays is that 

visual crowding may occur, which happens when ensemble members are plotted too 

closely together and cannot be easily differentiated, increasing difficulty in interpretation. 

While researchers have developed algorithms to reduce visual crowding (e.g. Liu et al., 

2016), visual crowding may still occur when all of the ensemble data is plotted.  

 Summary displays are an alternative to ensemble displays and are suggested to be 

easier and more effective for users to understand. Work in cartography argues that 
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choropleth maps—which are color encodings of summary statistics such as the average 

value over a region—are more comprehensible than displaying all of the individual data 

values (Harrower & Brewer, 2003; Watson, 2013). Michael Dobson argued that the 

summarization in choropleth maps decreases mental workload and time to perform tasks 

while improving control of information presentation and pattern recognition (Dobson, 

1973, 1980). Beyond choropleth maps, summarization techniques have been developed 

that can encode advanced summary statistics such as quartiles, outlier data, and task-

relevant features in ensemble data sets (Mirzargar, Whitaker, & Kirby, 2014; Whitaker et 

al., 2013).  

 However, researchers have documented drawbacks to summarization techniques 

as well.  First, displays of summary statistics such as median, mean, and standard 

deviations can hide important features in the data, such as bimodal or skewed 

distributions and outliers (Whitaker et al., 2013). Second, summary displays that include 

boundaries, such as line plots of summary statistics, produce more biased decisions than 

scatter plots of the same data (Correll & Heer, 2017). Finally, studies have demonstrated 

that even simple summary displays, such as statistical error bars, are widely 

misinterpreted by students, the public, and even trained experts (Belia, Fidler, Williams, 

& Cumming, 2005; Newman & Scholl, 2012; Jibonananda Sanyal, Zhang, Bhattacharya, 

Amburn, & Moorhead, 2009; Savelli & Joslyn, 2013). 

 In the context of hurricane forecasts, there is evidence that summary displays may 

result in more misinterpretations than ensemble displays (Ruginski et al., 2016). A 

notable example is the National Hurricane Center’s (NHC) cone of uncertainty (see 

Figure 1).  
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Figure 1. An example of a hurricane forecast cone typically presented to end-users by the 
National Hurricane Center (http://www.nhc.noaa.gov/aboutcone.shtml). 
 

Forecasters create the cone of uncertainty by averaging a five-year sample of historical 

hurricane forecast tracks, resulting in a border where locations inside the boundary have a 

66% likelihood of being struck by the center of the storm (Cox et al., 2013). Even though 

the cone of uncertainty is used by the National Hurricane Center, it does not follow well-

established cartographic principles (e.g., Dent, 1999; Robinson, Morrison, Muehrcke, 

Kimerling, & Guptill, 1995), including hierarchical organization which asserts that the 

level of salience should correspond to the importance of information in a display. 

However, the cone of uncertainty does support the general view that simplifying complex 

ensemble data will make decisions easier for users. Ruginski et al. (2016) compared five 

different encodings of ensemble data (three summary displays, one display of the mean, 

and one ensemble display) of hurricane forecast tracks, using a task where participants 

predicted the extent of damage that would occur at a given location. The three summary 

displays included a standard cone of uncertainty, which had a mean line, a cone without 

the mean line, and a cone in which the color saturation corresponded to the probability 
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distribution of the ensemble data. Results revealed that with the summary displays, 

participants believed that locations at the center of the hurricane that were at a later point 

in time would receive more damage than at an earlier time point. Strikingly, ensemble 

displays showed the reverse pattern of responses, with damage rated to be lower at the 

later time. Further, we found that participants viewing any of the summary displays 

compared to the ensemble display were significantly more likely to self-report that the 

display depicted the hurricane growing in size over time. In fact, the cone only depicts a 

distribution of potential hurricane paths and no information about the size (Cox et al., 

2013).  One consistency between the three summary displays was the growing diameter 

of the cone boundaries (as illustrated in Figure 2a). A possible interpretation of this 

finding is that viewers focused on the increasing size of the cone, rather than mapping 

increasing uncertainty to the size of the cone.  

 More generally, one potential source of the misinterpretation of both summary 

and ensemble displays is their salient visual features. Salient visual features are defined 

as the elements in a visualization that attract bottom-up attention (e.g., Itti, Koch, & 

Niebur, 1998; Rosenholtz & Jin, 2005). Researchers have argued that salience is also 

influenced by top-down factors (e.g., training or prior knowledge), particularly for tasks 

that simulate real world decisions (Fabrikant, Hespanha, & Hegarty, 2010; Hegarty, 

Canham, & Fabrikant, 2010; Henderson, 2007).  Hegarty et al. (2010) demonstrated that 

in a map-based task, top-down task demands influenced where participants looked on the 

page, and then salience influenced what information they attended to in the region of 

interest. This work suggests that both top-down processing and salience guide attention. 

As described above, a salient visual feature of the cone of uncertainty is the border, 



ENSEMBLE AND SUMMARY COGNITION 
	

	

10	

which surrounds the cone shape that grows in diameter with time (see Figure 2a). A 

salient feature of ensemble displays is the individual ensemble members and their 

relationship to one another (see Figure 2b). It is possible that the salient features of both 

the cone of uncertainty and ensemble displays of the same data attract viewers’ attention 

and bias their decisions (Bonneau et al., 2014).  

 The motivation for this work was to address both an applied goal of testing 

whether salient features of summary and ensemble displays contributed to some of the 

biases reported in prior work (Ruginski et al. 2016) and a theoretical goal of examining 

whether salient visual features inform how viewers interpret displays. In the case of the 

cone of uncertainty, viewers may be associating the salient increasing diameter of the 

cone with changes in the physical size of the hurricane. To test this possibility, in the first 

experiment, we expanded on our previous paradigm by having participants make 

estimates of the size and intensity of a hurricane with either ensemble or summary 

displays. In a second experiment, we focused further on the ensemble visualization and 

judgments of potential damage across the forecast, testing whether the role of the 

individual lines presented in an ensemble display would be misinterpreted because of 

their salience in the display. Finally, in a third experiment, we replicate the second 

experiment and extend the findings beyond a forced choice task.  

Experiment 1 
 

 In line with our prior work (Ruginski et al. 2016), we hypothesized that 

participants viewing the cone of uncertainty would report that the hurricane was larger at 

a future time point.  It was an open question whether judgments of intensity would also 

be associated with the depicted size of the cone. We predicted that those viewing the 
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ensemble display would report that the size and intensity of the storm remained the same 

in the future because the size cue from the cone was not present. On the other hand, for 

ensemble hurricane track displays (see Figure 3B and 3D), it is possible that the 

individual tracks and their relationship to one another are the salient features that are used 

to interpret the hurricane forecast. The tracks in the ensemble display employed by 

Ruginski et al. (2016) became increasingly further apart as the distance from the center of 

the storm increased, which could be associated with a decrease in perceived intensity of 

the storm. We predicted that participants viewing the ensemble display would believe 

that the storm was less intense where the individual tracks were further apart (an effect of 

distance from the center of the storm). However, because the cone of uncertainty lacks 

this salient spread of tracks, we predicted that judgments of intensity when viewing the 

cone would not be affected by distance from the center of the storm.  

Methods 

Participants. Participants were 182 undergraduate students currently attending 

the University of Utah who completed the study for course credit. Three individuals were 

excluded from final analyses for failing to follow instructions. Of the 179 included in 

analyses, 83 were male, and 183 were female, with a mean age of 21.78 (SD = 5.72). 

Each participant completed only one condition: size task with cone (n = 40), size task 

with ensemble display (n = 42), intensity task with cone (n = 48), intensity task with 

ensemble display (n = 48).  

Stimuli. Stimuli were presented online using the Qualtrics web application 

(Qualtrics, 2005). On each trial, participants were presented with a display depicting a 

hurricane forecast. The hurricane forecast images were generated using prediction 
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advisory data from two historical hurricanes, available on the NHC website 

(http://www.nhc.noaa.gov/archive). The cone of uncertainty and an ensemble display 

technique were both used to depict the two hurricanes (see Figure 2).  

 

Figure 2.  Examples of the cone (A, C) and ensemble display (B, D) visualization 
techniques of hurricane one (A, B) and two (C, D).    

A custom computer code was written to construct the summary and ensemble displays, 

using the algorithm described on the NHC website (http://www. 

nhc.noaa.gov/aboutcone.shtml). The ensemble and summary displays were created using 

the code of Cox et al. (2013). The resulting displays were a subset of the five 

visualization techniques used in Ruginski et al. (2016), which depicted two hurricanes 

and were randomly presented to participants. All were digitally composited over a map of 
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the U.S. Gulf Coast that had been edited to minimize distracting labeling. These images 

were displayed to the subjects at a pixel resolution of 740 x 550. A single location of an 

“oil rig” depicted as a red dot was superimposed on the image at one of twelve locations 

defined relative to the centerline of the cone and the cone boundaries. We chose the 

following distances to place the oil rigs relative to the centerline of the cone, 69 km, 173 

km, 277 km, 416 km, 520 km, 659 km (see Figure 3), which correspond to .386 cm, .97 

cm, 1.56 cm, 2.35 cm, 2.94 cm, and 3.72 cm from the center line of the hurricane on the 

map.  

 
Figure 3. An example of the cone visualization, shown with the 12 possible oil rig 
locations. Only one location was presented on each trial (and km were not presented).  
 
Relative points with respect to the center and cone boundary were chosen so that three 

points fell outside the cone boundary (277 km, 173 km, and 69 km), three points fell 

within the cone boundary (416 km, 520 km, and 659 km), and so that no points appeared 



ENSEMBLE AND SUMMARY COGNITION 
	

	

14	

to touch the visible center line or boundary lines. Underneath the forecast, a scale ranging 

from a to i was displayed along with visual depictions. For the intensity task the scale 

was indicated by gauges, and for the size task the scale was indicated by circles (see 

Figure 4). Each circle was scaled by 30% from the prior circle. Each gauge was scaled by 

1 “tick” from the prior gauge. The starting size and intensity of the hurricane were 

overlaid on the beginning of the hurricane track forecast for each trial. Three starting 

sizes and intensities (c, e, g) were presented in a randomized order.  

 

Figure 4. An example of the visual depiction of the Likert scales, which depicts intensity 
with gauges (top) and size with the diameter of the circle (bottom).  

Salience Assessment. To test the previously stated prediction about salience of 

features of ensemble and summary displays, we utilized the Itti et al. (1998) salience 

model. Prior research has employed the Itti et al. (1998) salience model to test the 

salience of cartographic images and found that this model is a reasonable approximation 

of bottom-up attention (Fabrikant et al., 2010; Hegarty et al., 2010). The Itti et al. (1998) 

salience model was run in  Matlab (2016, Version	9.1.0.441655) using the code provided 

by Harel (2015). The results of this analysis suggest that the most salient visual features 
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of the cone of uncertainty are the borders of the cone and the centerline (See Figure 5a).  

Additionally, the salient visual features of the ensemble display are the relative spread of 

hurricane tracks (see Figure 5b).  

 

Figure 5. Example of the visual output generated using the Itti et al. (1998) salience 
model, which shows example stimuli used in this experiment. Brighter coloration 
indicates increased salience. Figure 5A depicts the summary display and Figure 5B the 
ensemble display. 

Design. We utilized a 2 (visualization type) x 2 (hurricane) x 3 (starting size or 

intensity) x 12 (oil rig location) mixed factorial design for each task (size and intensity). 

Hurricane, starting size or intensity, and the oil rig location were within-participant 

variables, resulting in a total of 72 trials per participant. Participants were randomly 

assigned to one of two visualization conditions (summary or ensemble display) and one 

of two tasks (size or intensity) as between-participants factors.  

Procedure. Individuals were first given a simple explanation of the task and 

visualization. Participants completing the size task were provided with the following 

instructions: 

Throughout the study you will be presented with an image that represents a 
hurricane forecast, similar to the image shown above. You will be provided with 
the initial hurricane size (diameter) at a particular point in time, indicated by the 
circle shown at the apex (beginning) of the hurricane forecast. An oil rig is 

A. B.



ENSEMBLE AND SUMMARY COGNITION 
	

	

16	

located at the red dot. Assume that the hurricane were to hit the oil rig (at the red 
dot). Your task will be to select the size that best represents what the hurricane’s 
diameter would be when it reaches the location of the oil rig. 

 
Additionally, each trial included the text as a reminder of the task, “Assume that the 

hurricane were to hit the oil rig (at the red dot). Your task is to select the size that best 

represents what the hurricane’s diameter would be when it reaches the location of the oil 

rig.” For the intensity task, participants were provided the instructions:  

Throughout the study you will be presented with an image that represents a 
hurricane forecast, similar to the image shown above. You will be provided with 
the initial hurricane wind speed at a particular point in time, indicated by the 
gauge shown at the apex (beginning) of the hurricane forecast. As the arm of the 
gauge rotates clockwise the wind speed increases. For example, gauge A 
represents the lowest wind speed and gauge I the highest wind speed. An oil rig is 
located at the red dot. Assume that the hurricane were to hit the oil rig (at the red 
dot). Your task will be to select the gauge that best represents what the 
hurricane’s wind speed would be when it reaches the location of the oil rig. 

 
Each trial also contained the instructions, “Assume that the hurricane were to hit the oil 

rig (at the red dot). Your task is to select the gauge that best represents what the 

hurricane’s wind speed would be when it reaches the location of the oil rig.”  

Following the instructions, participants completed all of the trials presented in a different 

random order for each participant. Lastly, participants answered questions related to 

comprehension of the hurricane forecasts. These included two questions specifically 

relevant to the current research question: “The display shows the hurricane getting larger 

over time.” and “The display indicates that the forecasters are less certain about the path 

of the hurricane as time passes.” These questions also included a measure of the 

participants’ understanding of the response glyphs used in the experiment by asking them 

to indicate which of two wind gauges had a higher speed or to match the size of circles. 
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Participants who did not adequately answer these questions were excluded from the 

analysis (2 participants for the wind speed gauges, 1 for the size circles). 

Data Analysis 

Multilevel models (MLM) were fit to the data using Hierarchical Linear Modeling 

7.0 software and restricted maximum likelihood estimation procedures (Raudenbush & 

Bryk, 2002). Multilevel modeling is a generalized form of linear regression that is used to 

analyze variance in experimental outcomes predicted by both individual (within-

participants) and group (between-participants) variables. A MLM was appropriate for 

modeling our data and testing our hypotheses for two major reasons: 1) MLM allows for 

the inclusion of interactions between continuous variables (in our case, distance) and 

categorical predictors (in our case, the type of visualization); 2) MLM uses robust 

estimation procedures appropriate for partitioning variance and error structures in mixed 

and nested designs (repeated measures nested within individuals in this case). 

We transformed the dependent variable before analysis by calculating the 

difference between the starting value of the hurricane (either size or intensity) and the 

participant’s judgment. A positive value of the difference score represents an increase in 

judged size or intensity. In addition, although an ordinal variable by definition, we treated 

the dependent variable Likert scale as continuous in the model because it contained over 

five response categories (Bauer & Sterba, 2011).  

For the distance variable, we analyzed the absolute value of oil rig distances, 

regardless of which side of the hurricane forecast they were on, as none of our hypotheses 

related to whether oil rigs were located on a particular side. We divided the distance by 

ten before analysis so that the estimated model coefficient would correspond to a ten-
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kilometer change (rather than a one-kilometer change). The mixed two-level regression 

models tested whether the effect of distance from the center of forecasts (level 1) varied 

as a function of visualization (level 2). Visualization was dummy coded such that the 

cone visualization was coded as 0 and the ensemble display as 1. We tested separate 

models for the intensity and size tasks.  Self-report measures of experience with 

hurricanes and hurricane prone regions were also collected. As the participants were 

students at the University of Utah, so few students had experienced a hurricane (3%) or 

had lived in hurricane-affected regions (7%) that we did not include these measures as 

covariates.  

Results – Size  

Level 1 of our multilevel model is described by: 

Changeij = β0j + β1j*(Distanceij) + rij; 
and level 2 by: 
β0j = γ00 + γ01*(Visualizationj) + u0j 
β1j = γ10 + γ11*(Visualizationj) + u1j 
 
Where i represents trials, j represents individuals, and the β and γ terms are the regression 

coefficients. The error term rij indicates the variance in the outcome variable on a per trial 

basis, and u0j on a per person basis. Though people are assumed to differ on average (u0j) 

in the outcome variable, we tested to determine whether the effect of distance differed per 

person (u1j) using a variance-covariance components test. We found that the model 

including a random effect of distance fit the data better than the model not including this 

effect, and so the current results reflect that model (χ2 = 955.95, df = 2, p < 0.001). 

Including this term allowed us to differentiate between the variance accounted for in 

judgments specific to a fixed effect of distance and the variance accounted for in 

judgments specific to a random effect of person.  
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 Our primary hypothesis was that we would see greater size judgments with the 

cone compared to the ensemble display, reflecting a misinterpretation that the hurricane 

grows over time. Consistent with this prediction, we found a significant main effect of 

visualization type on average change in size judgments (γ01 = -0.69, SE = 0.33, t-ratio = -

2.08, df = 80, p = 0.04). This effect indicates that, at the center of the hurricane, 

individuals viewing the cone visualization had .69 greater increase in their original size 

judgment compared with individuals viewing the ensemble visualization (see Figure 6). 

However, the oil rig distance from the center of the storm did not significantly alter 

change in size judgments (γ10 = 0.01, SE = 0.01, t-ratio = 1.43, df = 80, p = 0.16) and the 

effect of distance from the center of the storm on change in size judgments did not differ 

based on visualization type (γ11 = -0.01, SE = 0.01, t-ratio = -1.32, df = 80, p = 0.19). 

Further, the main effect of visualization type on the average change in size judgment was 

also supported by results of the post-test question. A t-test, in which yes was coded as 1 

and no as 0, revealed that participants viewing the cone (M = .70, SE = .04) were 

significantly more likely to report that the display showed the hurricane getting larger 

over time compared to the ensemble display (M = .39, SE = .05), t(176) = 4.436 , p < 

.001, 95% CI [0.17, 0.45], Cohen’s d = .66.  
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Figure 6. The effect of distance from center and visualization type on change in size 
judgments. Grey shading indicates  ± 1 SE. Accurate interpretation would be indicated by 
a “0” change score. A one unit change represents a one step change in circle size along a 
9-point scale (see Figure 4 for the 9-point scale). 
 Results – Intensity 

The multilevel model used for the intensity data included the exact same variables 

as the size model. Similar to the first model, we found that the model including a random 

effect of distance fit the data better than the model not including this effect, and so the 

current results reflect that model (χ2 = 704.81, df = 2, p <0.001).  

 For intensity, we expected to see a greater effect of distance from the center of the 

storm on judgments with the ensemble display compared to the cone, reflecting 

participants’ attention to the increasing spread of tracks as the distance from the center 

increase for the ensemble display. First, we found a significant main effect of 

visualization type on average change in intensity judgments (γ01 = -0.85, SE = 0.33, t-

-3

-2

-1

0

1

2

3

100 200 300 400 500 600

Distance (km)

S
iz

e 
di

ffe
re

nc
e 

fro
m

 s
ta

rti
ng

 v
al

ue
 (u

ni
t c

irc
le

)

Visualization Cone Ensemble



ENSEMBLE AND SUMMARY COGNITION 
	

	

21	

ratio = -2.58, df = 95, p = 0.01). This indicates that at the center of the hurricane, 

individuals viewing the cone visualization increased their intensity judgment .85 (almost 

a full wind gauge) more than those who viewed the ensemble visualization at the center 

of the hurricane. Second, we found a significant main effect of distance from the center 

of the storm (γ10 = -0.02, SE = 0.01, t-ratio = -3.28, df = 95, p = 0.001), which is qualified 

by a significant cross-level interaction between distance and visualization type (γ11 = -

0.02, SE = 0.01, t-ratio = -3.33 df = 95, p = 0.001). To decompose the interaction 

between distance from the center of the storm and visualization type, we computed 

simple slopes tests for the cone and ensemble visualizations (see Figure 7). This revealed 

that the association between distance from center of the hurricane and change in intensity 

judgment is different from zero for each visualization (cone visualization: Estimate = -

0.02, SE = 0.01, χ2 = 64.74, p < 0.001, ensemble visualization: Estimate = -0.04, SE = 

0.004, χ2 = 10.74, p = 0.001), and stronger for the ensemble visualization (χ2 = 101.89, p 

< 0.001). This result suggests that judgments of intensity decreased with distance more 

for the ensemble display than for the cone, consistent with a focus on the relative spread 

of hurricane tracks. In addition, using a t-test, a post-test question revealed that 

participants viewing the ensemble display (M = .53, SE = .04) were more likely to report 

that the display indicated the forecasters were less certain about the path of the hurricane 

over time compared to the cone (M = .39, SE = .05), t(176) = -1.97, p = . 04, 95% CI [-

0.29, -0.0003], Cohen’s d = .29.  
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Figure 7. Simple slopes of the interaction between distance and visualization type on 
change in intensity judgments. Grey shading indicates ± 1 SE. Accurate interpretation 
would be indicated by a “0” change score. A one unit change represents a one step 
change in gauge intensity along a 9-point scale (see Figure 4 for the 9-point scale).   
 
Discussion 

The results of this experiment showed that novice users interpret the size and 

intensity of a hurricane represented by ensemble and summary displays differently. Our 

prior work showed different damage ratings over time with the cone compared to the 

ensemble display, but it was unclear whether these were being driven by interpretations 

of size or intensity because a more general concept of “damage” was used (Ruginski et 

al., 2016). In the current study, we found a similar pattern of greater increase in both size 

and intensity reported at the center of the hurricane with the cone, compared to the 

ensemble display. Furthermore, we found an effect of decreasing intensity judgments 
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with distance from the center of the storm that was greater for the ensemble display than 

for the cone.  

These findings support our hypothesis that a salient feature of the cone is the 

border that shows the diameter of the cone, which is more likely to influence viewers’ 

beliefs that the storm is growing over time compared to the ensemble display, which does 

not have this visually salient feature.  We saw evidence of the participants’ beliefs that 

the cone represented the storm growing in size with both objective judgments of size 

(which increased more relative to judgments made using the ensemble display) and self-

reported interpretations of the cone of uncertainty. Our second hypothesis that 

participants viewing the ensemble display would believe that the storm was less intense 

where the individual tracks were further apart was supported by results of the intensity 

task conditions. Here, while intensity ratings were higher for the cone compared to the 

ensemble display, the rate of decrease in ratings of intensity as distance from the center of 

the storm increased was greater for the ensemble display than the cone. Together these 

findings demonstrate that in the context of hurricane forecasts the salient visual features 

of the display bias viewers’ interpretations of the ensemble hurricane tracks.  

More generally, we suggest that summary displays will be most effective for 

cases in which spatial boundaries of variables such as uncertainty can’t be misconstrued 

as presenting physical boundaries. In contexts like cartography where spatial layouts 

inherently represent physical space, ensemble displays provide a promising alternative to 

summary displays. Although our findings suggest that ensemble displays seem to have 

some advantages over summary displays for communicating data with uncertainty in a 
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geospatial context, it may also be the case that ensemble displays provoke additional 

unintended biases. We tested one potential ensemble display bias in Experiment 2.  

Experiment 2 
 

While the findings of Experiment 1 suggested that viewers of the ensemble 

visualization are less likely to believe that the hurricane is growing in size, it is possible 

that ensemble displays elicit unique biases as well. One possible bias is that the 

individual tracks of an ensemble display can lead a viewer to overestimate the impact of 

the hurricane for locations covered by a path. The storm tracks presented are only a 

sampling of possible ways the hurricane could go and not an exhaustive list of all routes. 

It would be a misconception to believe that a hurricane would travel the full extent of any 

one track. Further, it would also be incorrect to believe that locations that are not covered 

by a path have little to no possibility of being hit by the storm.  Rather, the relative 

density of tracks indicates the comparative probability of a hurricane being in a given 

region at future time points. 

To test whether viewers’ decisions are biased by the individual paths of the 

ensemble visualization, we conducted a second experiment in which the locations of the 

oil rigs were changed so that one oil rig was always superimposed on a hurricane path. 

We examined whether viewers would maintain the strategy to rate higher damage closer 

to the center of the storm, reported in Ruginski et al. (2016) (i.e. selecting the closest rig 

to the center), or whether the salience of the ensemble track location would decrease the 

strength of the distance-based strategy (i.e. selecting the rig that was superimposed on a 

hurricane path, even when located farther way from the center of the storm). In this 

experiment, participants were presented with two oil rigs, one that was located on a 
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hurricane path and one that was either closer (see Figure 8A) or farther from the center of 

the storm (see Figure 8B) than the one that was located on the path.  

Participants were then asked to decide which of the two oil rigs would receive the most 

damage. Our hypothesis was that the likelihood of choosing the rig closer to the center of 

the storm would decrease if the rig farther from the center of the storm fell on a hurricane 

path, supporting the notion that the individual paths are salient features of the ensemble 

display that could lead to biased responses. In the rest of the paper we will refer to the 

close oil rig, meaning the oil rig that is closer to the center of the hurricane forecast 

display and the farther oil rig, which is the rig farther away from the center of the 

hurricane forecast than the closer oil rig. 

Methods 

Participants. Participants were 43 undergraduate students currently attending the 

University of Utah who completed the study for course credit. 12 participants were male, 

and 31 were female, with a mean age of 23.56 (SD = 7.43). 

Stimuli. Stimuli were presented using the previously detailed approach. On each 

trial, participants were presented with a display depicting a hurricane forecast and two oil 

rigs (see Figure 8). The distance between the oil rigs was roughly 100 km and remained 

constant for all of the trials. The 16 locations of the rig pairs were chosen selectively in 

areas where one rig was always located on a track and the other oil rig was at the same 

time point but not on a track, with an equal number of locations on each side of the 

hurricane.  The rig on the track was either closer to the center or farther from the center 

relative to the rig that was not touching a track. Underneath the forecast, radio buttons 

were presented that allowed participants to indicate which oil rig they believed would 
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receive the most damage. Damage was used for the response measure because  found that 

participants were more likely to use a strategy that was based on distance from the center 

of the hurricane when making judgments about damage. This measure allowed us to 

determine if the colocation of an oil rig and a hurricane track modified the types of 

distance based damage judgments that were reported in Ruginski et al. (2016).  

 

Figure 8. Examples of the stimuli used in Experiment 2 depicting two hurricanes. Image 
A represents the condition in which the father rig from the center of the storm was 
located on a hurricane track, and image B represents the condition where the closest rig 
was located on a track.  

Design. We utilized a within-subjects design, 2 (close oil rig on line or far oil rig 

on line) x 2 (hurricane) x 16 (oil rig pair locations), resulting in a total of 32 trials per 

participant. Oil rig on line refers to if the closer or farther oil rig from the center of the 

hurricane was located on the hurricane track.  

Procedure. Individuals were first given a simple explanation of the task and 

visualization.  

Throughout the study you will be presented with an image that represents a 
hurricane forecast, similar to the image shown above. An oil rig is located at each 
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of the two red dots. Your task is to decide which oil rig will receive more damage 
based on the depicted forecast of the hurricane path. 

 
Additionally each trial included the text, “Your task is to decide which oil rig will receive 

the most damage from the hurricane.” Following the instructions, participants checked a 

box indicating which oil rig they believed would receive the most damage. The trials 

were presented in a different random order for each participant. Lastly, participants 

answered demographic questions and questions related to hurricane experience.  

Data Analysis 

A multilevel logistic regression model was fit to the data using the lme4 package 

in R and maximum likelihood Laplace approximation estimation procedures  (Bates, 

Maechler, Bolker, & Walker, 2015). A logistic MLM was appropriate for modeling our 

data and testing our hypotheses because MLM uses robust estimation procedures 

appropriate for partitioning variance and error structures in mixed and nested designs 

(repeated measures nested within individuals in this case) for binary outcomes (choosing 

which oil rig would receive more damage in this case).  

Level 1 of our multilevel model is described by: 

Close Strategy ij = β0j + β1j*(Far Rig On Line)  + rij; 
and level 2 by: 
β0j = γ00 + u0j 
β1j = γ10 
 
Far Rig On Line was dummy coded such that the further rig overlapping with a line 

corresponded to 1 while the closer rig being on the line corresponded to 0. Our outcome 

variable, Close Strategy, was coded such that selecting the close oil rig to receive more 

damage corresponded to 1 and selecting the far oil rig to receive more damage 

corresponded to 0. We found that the model not including a random effect of On Line fit 
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the data better than the model including this effect, and so the current results reflect that 

model (χ2 = 5.79, df = 1, p = 0.02). This indicates that there was a consistent fixed effect 

of On Line across people. 

The participants had very high odds of deciding that the closer oil rig would 

receive the most damage when the closer oil rig was on the line (and by design, the 

farther oil rig was not on a line) (γ00 = 5.75, SE = 0.52, Odds = 314.191, z = 11.19, p < 

.001). Expressed in terms of predicted probability, this effect indicates that participants 

chose the closer oil rig to receive more damage 99.68% of the time when the closer oil rig 

was on a line (see Figure 8). This very high proportion makes sense, as this condition 

combined properties of close location to the center and a location falling on the path. 

Importantly, our model indicated a strong effect of Far Rig On Line, such that predicted 

probability of choosing the closer oil rig as receiving the most damage decreased to 

64.15% when the farther oil rig was on the line (γ10 = -5.17, SE = 0.37, Odds-ratio = 

0.006, z = -13.85, p < .001, see Figure 8).  In this condition, the far oil rig was chosen on 

304 of the 688 trials, compared to only 12 of the 688 trials when it was not on the line.  

In other words, while participants chose the closer oil rig more often in both conditions, 

the result that the tendency to choose the farther rig increased by about 35% when the 

farther rig fell on a visual path strongly supports the use of the individual path as a salient 

feature influencing decisions.  

																																																								
1The odds for the γ00 intercept and subsequent odds ratio for the γ10 term are extreme 
values due to the far oil rig only being chosen 12 out of 688 trials when the close rig was 
on a line. 



ENSEMBLE AND SUMMARY COGNITION 
	

	

29	

 

Figure 9. Predicted probabilities of choosing the close oil rig to receive more damage. 
Bars represent 95% confidence intervals. Accurate interpretation would be to choose the 
close oil rig 100% of the time. 
 
Discussion 

We found that non-experts almost always chose the closer oil rig to the center of 

the hurricane forecast when the oil rig fell on an individual hurricane track, consistent 

with prior work showing a strategy to report more damage to locations close to the center 

(Ruginski et al., 2016). However, when the farther oil rig visually overlapped with a 

single ensemble track, judgments were significantly biased by the individual path, 

decreasing the likelihood of choosing the close location. The results of the second study 

suggest that ensemble displays have their own set of interpretation biases, as individual 

ensemble members can be over weighted in participants’ judgments.  

Experiment 3 

In an effort to replicate the prior study and test if the findings were robust to a 

non-forced choice task, a third study was conducted that was identical to Experiment 2 
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but with an additional response option of “Equal Damage”. By adding an “Equal 

Damage” response participants could indicate that neither oil rig A or B would receive 

more damage. The same methods and data analysis were used as Experiment 2. 

Participants were 35 undergraduate students currently attending the University of Utah 

who completed the study for course credit. 10 participants were male, and 24 were 

female, with a mean age of 22.06 (SD = 4.5).  

Results 

As in Experiment 2, we used a multilevel logistic regression model to determine 

the impact of the colocation of an ensemble track and an oil rig. Prior to analysis, trials 

that participants answered as “Equal Damage” (219 trials, 19.55% of total) were 

removed. Of the trials where participants reported equal damage, 79 occurred when the 

close rig was on a line, and 140 occurred when the far rig was on a line. Models including 

fixed effects only and random effects fit the data equally well and results detail the more 

parsimonious model not including the random effect (χ2 = 0, df = 1, p = 1.00). This 

indicates that there was a consistent fixed effect of the oil rig touching an ensemble track 

across people. 

Consistent with Experiment 2, participants had high odds of deciding that the 

closer oil rig would receive the most damage when it was on the line  (γ00 = 10.94, SE = 

1.52, Odds = 56387.342, z = 7.2, p < .001). In other words, participants indicated that the 

closer oil rig would receive more damage 99.99% of the time, when it was on a line. This 

finding replicates the results of our prior experiment.  Further, our results showed a 

																																																								
2The odds for the γ00 intercept and subsequent odds ratio for the γ10 term are extreme 
values due to the far oil rig only being chosen 1 out of 481 trials when the close rig was 
on a line. 
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similar effect compared to Experiment 2 for Far Rig On Line, such that predicted 

probability of choosing the closer oil rig as receiving the most damage decreased to 

54.59% when the farther oil rig was on the line (γ10 = -10.76, SE = 1.29, Odds-ratio = 

0.00002, z = -8.36, p < .001, see Figure 10).  In this condition, the far oil rig was chosen 

on 238 of 420 trials, compared to only 1 of 481 trials when it was not on the line. In sum, 

Experiment 3 replicates the take home points of Experiment 2 but the standard error 

increased in Experiment 3. It is likely that including the response option of “Equal 

Damage” increased the variability of the responses by decreasing sample size (reducing 

trials) and choosing the far rig more often (almost 50-50) for those trials that were not 

decided as equal damage.  

 

Figure 10. Predicted probabilities of choosing the close oil rig to receive more damage. 
Bars represent 95% confidence intervals. Accurate interpretation would be to choose the 
close oil rig 100% of the time. 
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In Experiment 3, we replicated Experiment 2, showing that participants were 

significantly biased by the colocation of an oil rig and an individual ensemble track. In 

the third study, on 19.55% of trials individuals believed that the two oil rigs would 

receive equal damage, and about twice as many of these trials occurred when the far oil 

rig was on the line, providing additional evidence that the line competes with proximity 

to the center in evaluation of damage. For the rest of the trials where individuals chose 

either the close or far oil rig, results were consistent with Experiment 2, showing a 

decrease in the likelihood of choosing the close location when the far oil rig fell on the 

line. Together these studies demonstrate that decisions about ensemble displays of 

hurricane forecast tracks change when making judgments about specific points that 

intersect with a track. More broadly, this work suggests that individual members of an 

ensemble display may be overweighed when the ensemble member happens to overlap 

with a point of interest. For example, individuals may be more likely to evacuate or take 

precautionary actions if a hurricane forecast track overlaps with their own town, but feel 

less concerned if not. These results suggest that visualization scientists should consider 

using ensemble displays in cases where users do not need to make decisions about 

specific points that may be influenced by an ensemble member. Instead, ensemble 

displays may be best suited for cases in which viewers are making judgments about 

patterns in the data or about areas, which is consistent with tasks proposed for ensemble 

displays by Szafir et al. (2016).    

Our findings may be influenced by the nature of the task in a geospatial context, 

where asking about a single point biases users towards more of an outlier-identification 

strategy (Szafir, Haroz, Gleicher, & Franconeri, 2016). Future work involving 
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interpretation of geospatial uncertainty may help to disentangle this by implementing 

tasks that require individuals to make judgments about larger areas of space (such as a 

county), which may force individuals to summarize the visualization and be less biased 

by individual tracks. Correll and Heer (2017) provide support for the claim that tasks 

influence the nature of biases by demonstrating that viewers are not affected by outliers 

when making judgments about the overall trends in ensemble data.  

General Discussion  

Our first study demonstrated that novice users interpret the size and intensity of a 

hurricane represented by an ensemble display and the cone of uncertainty differently, 

with relative lower size and intensity judgments over time for the ensemble display 

compared to the cone. These findings support our hypothesis that viewers of the cone of 

uncertainty are more likely to incorrectly believe that the visualization depicts the 

hurricane growing over time, consistent with the results of Ruginski et al. (2016). 

Furthermore, in the intensity task condition, we found a stronger effect of distance from 

the center of the hurricane for the ensemble display than for the cone. This result is in line 

with our predictions, providing evidence that a salient feature of the ensemble display is 

the tracks and their relationship to one another. In sum, these studies suggest that the type 

of visualization technique used to depict hurricane tracks significantly influences 

viewers’ judgments of size and intensity—these effects are likely driven by the salient 

features of the displays, which is consistent with prior work (Correll & Heer, 2017; 

Newman & Scholl, 2012). Beyond hurricane forecasts, this work proposes that salient 

visual features in a display can attract viewers’ attention and bias their decisions. 

Attention may bias viewers’ judgments by manipulating the relative importance of 
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features. Viewers may overweight the importance of salient features because they are 

attending to them more or they may devalue other features that they pay less attention to.  

Despite their benefits, ensemble displays are not free of biases that negatively 

affect uncertainty comprehension. Our second and third studies found that while novice 

users predominantly make judgments as if ensemble displays are distributions of 

probable outcomes, they also indicate that locations that are touching an individual 

ensemble track will receive more damage.  However, we speculate that individual 

ensemble members may only influence judgments of specific points and may not 

influence users making judgments about areas. This assertion is consistent with work that 

suggests ensemble displays are well suited to conveying the gist of a scene (Correll & 

Heer, 2017; Oliva & Torralba, 2006; Rousselet et al., 2005). Further, the types of tasks 

that Szafir et al. (2016) propose for ensemble displays all include identifying patterns in 

groups of data that are spatially organized rather than point based judgments. This 

suggests that visualization scientists should consider the types of tasks that their users 

will be completing when selecting the appropriate visualization technique, and that 

ensemble displays are most appropriate for tasks that do not require judgments about 

specific points.  

Understanding human reasoning with static ensemble displays is a necessary first 

step to unpacking ensemble cognition, however, many visualization scientists may desire 

to present ensemble displays as animations or time-varying displays (Liu et al., 2016). 

Time-varying displays continually update the visualization with simulations, fading 

simulations out as a function of their time on the screen, which could reduce the salience 

of individual simulations. Directly manipulating the salience of features with animations, 
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in line with Fabrikant et al. (2010) and Hegarty et al. (2010), is a possible future direction 

for this work. While animations may reduce biases produced by individual tracks, 

animations may not be entirely beneficial (Tversky, Morrison, & Betrancourt, 2002) and 

often show little benefit when learning information from visualizations (Hegarty, Kriz, & 

Cate, 2003). However, the aforementioned work predominantly examined process 

diagrams and the negative impact of animations may not generalize to decision-making 

with uncertainty visualizations. Additionally, many animated visualization techniques 

also include user interaction capabilities. To determine the specific contributions of 

animation and user interaction to ensemble cognition, a systematic study is needed that 

tests both area and point based judgments using these techniques.  

Future work is also needed to address claims of how ensemble and summary 

displays are used beyond geospatial weather forecasting. Hurricanes are an example of 

geospatial data forecasting involving movement over space and time. It is possible that 

interpretations of ensemble versus summary displays differ across data dimensionality 

(e.g., 1-D bar charts or violin plots, see Correll & Gleicher, 2014) as well as across 

domains. For example, GPS-location data visualizations elicit top-down influences that 

can modify viewers’ judgments (Hegarty, Friedman, Boone, & Barrett, 2016). However it 

is unclear if viewers of weather forecasting data visualizations demonstrate the same top-

down influences. Additionally, the current studies provided limited information about the 

nature of the displays. This may have led viewers to rely more on visually salient features 

than they would have if provided with more specific instructions highlighting common 

misconceptions about uncertainty visualizations, including that changes in size of the 

display can represent other information than physical size changes and that ensemble 
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members are not always an exhaustive representation of all of the data. If we had given 

participants more information about what the cone or ensemble represents, they might 

have misinterpreted it less. Future work could add supplemental instruction before 

display presentation and assess how effectively that information facilitates desired 

interpretations.  Other biases may have resulted from the specific visual information 

depicted in the display. Perceptual biases and limitations of the visual system, such as 

simultaneous contrast effect and just noticeable differences, were not controlled for. Prior 

work shows that perception interacts with visualizations techniques (e.g., Cleveland & 

McGill, 1986; Kosara & Skau, 2016). As such, future work is needed to generalize these 

findings beyond a geospatial context and to additional visualization techniques. 

Conclusions 

While there is disagreement about the optimal ways to visualize ensemble data, 

our work argues that both summary and ensemble displays have inherent biases that are 

based on their salient visual features. We propose that summary displays of geospatial 

uncertainty can be misinterpreted as displaying size information, while ensemble displays 

of the same information are not subject to this bias.  On the other hand, when participants 

use ensemble displays to make point based judgments, they may overweight individual 

ensemble members in their decision-making process. Overall, both user expertise and the 

intended visualization goal should be considered when visualization scientists decide to 

implement either summary or ensemble displays to communicate uncertainty. Current 

practice in visualization tends to emphasize the development of visualization methods 

more than testing usability (Isenberg, Isenberg, Chen, Sedlmair, & Möller, 2013), 

although there is a growing acknowledgment of the importance of incorporating human 
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cognition and performance in visualization research (Carpendale, 2008; Kinkeldey, 

MacEachren, Riveiro, & Schiewe, 2015; Plaisant, 2004). As data availability and 

associated uncertainty visualization techniques continue to expand across the academic, 

industry, and public spheres, scientists must continue to advance understanding of end-

user interpretations in order for these visualizations to have their desired impact.  
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